Diffuse disconnectivity in traumatic brain injury: a resting state fMRI and DTI study

Walter de Gruyter GmbH - Tập 3 - Trang 9-14 - 2012
Cheuk Ying Tang1,2, Emily Eaves1, Kristen Dams-O’Connor3, Lap Ho4, Eric Leung1, Edmund Wong1, David Carpenter1, Johnny Ng1, Wayne Gordon3, Giulio Pasinetti2,4,5
1Department of Radiology, Mount Sinai School of Medicine, New York, USA
2Department of Psychiatry, Mount Sinai School of Medicine, New York USA
3Department of Rehabilitation Medicine, Mount Sinai School of Medicine, New York, USA
4Department of Neurology, Mount Sinai School of Medicine, New York, USA
5James J. Peters Veterans Affairs Medical Center, Bronx, USA

Tóm tắt

Diffuse axonal injury is a common pathological consequence of Traumatic Brain Injury (TBI). Diffusion Tensor Imaging is an ideal technique to study white matter integrity using the Fractional Anisotropy (FA) index which is a measure of axonal integrity and coherence. There have been several reports showing reduced FA in individuals with TBI, which suggest demyelination or reduced fiber density in white matter tracts secondary to injury. Individuals with TBI are usually diagnosed with cognitive deficits such as reduced attention span, memory and executive function. In this study we sought to investigate correlations between brain functional networks, white matter integrity, and TBI severity in individuals with TBI ranging from mild to severe. A resting state functional magnetic resonance imaging protocol was used to study the default mode network in subjects at rest. FA values were decreased throughout all white matter tracts in the mild to severe TBI subjects. FA values were also negatively correlated with TBI injury severity ratings. The default mode network showed several brain regions in which connectivity measures were higher among individuals with TBI relative to control subjects. These findings suggest that, subsequent to TBI, the brain may undergo adaptation responses at the cellular level to compensate for functional impairment due to axonal injury.

Tài liệu tham khảo

Huisman T. A., Schwamm L. H., Schaefer P. W., Koroshetz W. J., Shetty-Alva N., Ozsunar Y. et al., Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury, AJNR Am. J. Neuroradiol., 2004, 25, 370–376 Scheid R., Walther K., Guthke T., Preul C., von Cramon D. Y., Cognitive sequelae of diffuse axonal injury, Arch. Neurol., 2006, 63, 418–424 Kou Z., Wu Z., Tong K. A., Holshouser B., Benson R. R., Hu J. et al., The role of advanced MR imaging findings as biomarkers of traumatic brain injury, J. Head Trauma Rehabil., 2010, 25, 267–282 McDowell S., Whyte J., D’Esposito M., Working memory impairments in traumatic brain injury: evidence from a dual-task paradigm, Neuropsychologia, 1997, 35, 1341–1353 Arciniegas D. B., Held K., Wagner P., Cognitive Impairment Following Traumatic Brain Injury, Curr. Treat. Options Neurol., 2002, 4, 43–57 Schretlen D. J., Shapiro A. M., A quantitative review of the effects of traumatic brain injury on cognitive functioning, Int. Rev. Psychiatry, 2003, 15, 341–349 Hughes D. G., Jackson A., Mason D. L., Berry E., Hollis S., Yates D. W., Abnormalities on magnetic resonance imaging seen acutely following mild traumatic brain injury: correlation with neuropsychological tests and delayed recovery, Neuroradiology, 2004, 46, 550–558 Guskiewicz K. M., Marshall S. W., Bailes J., McCrea M., Cantu R. C., Randolph C. et al., Association between recurrent concussion and late-life cognitive impairment in retired professional football players, Neurosurgery, 2005, 57, 719–726 Basser P. J., Pajevic S., Pierpaoli C., Duda J., Aldroubi A., In vivo fiber tractography using DT-MRI data, Magn. Reson. Med., 2000, 44, 625–632 Wozniak J. R., Krach L., Ward E., Mueller B. A., Muetzel R., Schnoebelen S. et al., Neurocognitive and neuroimaging correlates of pediatric traumatic brain injury: A diffusion tensor imaging (DTI) study, Arch. Clin. Neuropsychol., 2007, 22, 555–568 Rutgers D. R., Toulgoat F., Cazejust J., Fillard P., Lasjaunias P., Ducreux D., White matter abnormalities in mild traumatic brain injury: a diffusion tensor imaging study, AJNR Am. J. Neuroradiol., 2008, 29, 514–519 Ogawa S., Lee T. M., Kay A. R., Tank D. W., Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proc. Natl. Acad. Sci. USA, 1990, 87, 9868–9872 McAllister T. W., Saykin A. J., Flashman L. A., Sparkling M. B., Johnson S. C., Mamourian A. C. et al., Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study, Neurology, 1999, 53, 1300–1308 Scheibel R. S., Pearson D. A., Faria L. P., Kotrla K. J., Aylward E., Bachevalier J. et al., An fMRI study of executive functioning after severe diffuse TBI, Brain Inj., 2003, 17, 919–930 Azouvi P., Couillet J., Leclercq M., Martin Y., Asloun S., Rousseaux M., Divided attention and mental effort after severe traumatic brain injury, Neuropsychologia, 2004, 42, 1260–1268 Maruishi M., Miyatani M., Nakao T., Muranaka H., Compensatory cortical activation during performance of an attention task by patients with diffuse axonal injury: a functional magnetic resonance imaging study, J. Neurol. Neurosurg. Psychiatry, 2007, 78, 168–173 Haier R. J., Cerebral glucose metabolism and intelligence, In: Biological approaches to the study of human intelligence, Norwood, NJ: Ablex, 1993, 317–332 Tang C. Y., Eaves E. L., Ng J. C., Carpenter D. M., Kanellopoulou I., Mai X. et al., Brain networks for working memory and factors of intelligence assessed in males and females with fMRI and DTI, Intelligence, 2010, 38, 293–303 Greicius M. D., Krasnow B., Reiss A. L., Menon V., Functional connectivity in the resting brain: A network analysis of the default mode hypothesis, Proc. Natl. Acad. Sci. USA, 2003, 100, 253–258 Damoiseaux J. S., Rombouts S. A., Barkhof F., Scheltens P., Stam C. J., Smith S. M. et al., Consistent resting-state networks across healthy subjects, Proc. Natl. Acad. Sci. USA, 2006, 103, 13848–13853 De Luca M., Beckmann C. F., De Stefano N., Matthews P. M., Smith S. M., fMRI resting state networks define distinct modes of longdistance interactions in the human brain, Neuroimage, 2006, 29, 1359–1367 MacDonald C. L., Schwarze N., Vaishnavi S. N., Epstein A. A., Snyder A. Z., Raichle M. E. et al., Verbal memory deficit following traumatic brain injury: assessment using advanced MRI methods, Neurology, 2008, 71, 1199–1201 Nakamura T., Hillary F. G., Biswal B. B., Resting network plasticity following brain injury, Plos One, 2009, 4, e8220 Smith S. M., Jenkinson M., Johansen-Berg H., Rueckert D., Nichols T. E., Mackay C. E. et al., Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data, Neuroimage, 2006, 31, 1487–1505 Smith S. M., Nichols T. E., Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference, Neuroimage, 2009, 44, 83–98 Beckmann C. F., Smith S. M., Probabilistic independent component analysis for functional magnetic resonance imaging, IEEE Trans. Med. Imaging, 2004, 23, 137–152 Benson R. R., Meda S. A., Vasudevan S., Kou Z., Govindarajan K. A., Hanks R. A. et al., Global white matter analysis of diffusion tensor images is predictive of injury severity in traumatic brain injury, J. Neurotraum., 2007, 24, 446–459 Xu J., Rasmussen I. A., Lagopoulos J., Håberg A., Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging, J. Neurotraum., 2007, 24, 753–765 Nobuhara K., Okugawa G., Sugimoto T., Minami T., Tamagaki C., Takase K. et al., Frontal white matter anisotropy and symptom severity of late-life depression: a magnetic resonance diffusion tensor imaging study, J. Neurol. Neurosurg. Psychiatry, 2006, 77, 120–122 Herrmann L. L., Le Masurier M., Ebmeier K. P., White matter hyperintensities in late life depression: a systematic review, J. Neurol. Neurosurg. Psychiatry, 2008, 79, 619–624 Greicius M. D., Srivastava G., Reiss A. L., Menon V., Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI, Proc. Natl. Acad. Sci. USA, 2004, 101, 4637–4642 Sorg C., Riedl V., Mühlau M., Calhoun V. D., Eichele T., Läer L. et al., Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 2007, 104, 18760–18765 Liang M., Zhou Y., Jiang T., Liu Z., Tian L., Liu H. et al., Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging, Neuroreport, 2006, 17, 209–213 Cherkassky V. L., Kana R. K., Keller T. A., Just M. A., Functional connectivity in a baseline resting-state network in autism, Neuroreport, 2006, 17, 1687–1690 Haier R. J., Siegel B. V. Jr., MacLachlan A., Soderling E., Lottenberg S., Buchsbaum M. S., Regional glucose metabolic changes after learning a complex visuospatial motor task — a positron emission tomographic study, Brain Res., 1992, 570, 134–143 Davis S. W., Dennis N. A., Daselaar S. M., Fleck M. S., Cabeza R., Que PASA? The posterior-anterior shift in aging, Cereb. Cortex, 2008, 18, 1201–1209 Damoiseaux J. S., Prater K. E., Miller B. L., Greicius M. D., Functional connectivity tracks clinical deterioration in Alzheimer’s disease, Neurobiol. Aging, 2011, epub ahead of print Qi Z. G., Wu X., Wang Z., Zhang N., Dong H., Yao L. et al., Impairment and compensation coexist in amnestic MCI default mode network, Neuroimage, 2010, 50, 48–55