Diffractive optics-based heterodyne-detected four-wave mixing signals of protein motion: From “protein quakes” to ligand escape for myoglobin

Gami Dadusc1, Jennifer P. Ogilvie1, Peter J. Schulenberg1, Una Marvet1, R. J. Dwayne Miller1
1Department of Physics, University of Rochester, Rochester, NY 14627; and Departments of Physics and Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6

Tóm tắt

Ligand transport through myoglobin (Mb) has been observed by using optically heterodyne-detected transient grating spectroscopy. Experimental implementation using diffractive optics has provided unprecedented sensitivity for the study of protein motions by enabling the passive phase locking of the four beams that constitute the experiment, and an unambiguous separation of the Real and Imaginary parts of the signal. Ligand photodissociation of carboxymyoglobin (MbCO) induces a sequence of events involving the relaxation of the protein structure to accommodate ligand escape. These motions show up in the Real part of the signal. The ligand (CO) transport process involves an initial, small amplitude, change in volume, reflecting the transit time of the ligand through the protein, followed by a significantly larger volume change with ligand escape to the surrounding water. The latter process is well described by a single exponential process of 725 ± 15 ns at room temperature. The overall dynamics provide a distinctive signature that can be understood in the context of segmental protein fluctuations that aid ligand escape via a few specific cavities, and they suggest the existence of discrete escape pathways.

Từ khóa


Tài liệu tham khảo

T A Jackson, M Lim, P A Anfinrud Seventh International Conference on Time-Resolved Vibrational Spectroscopy, comps. Dyer, R. B., Martinez, M. A. D., Shreve, A. & Woodruff, W. H. (Los Alamos Natl. Lab., Los Alamos, NM), Report LA-13290-C, pp. 9–13. (1995).

10.1038/35002641

10.1073/pnas.040459697

10.1016/S0006-3495(99)77289-9

10.1016/S0301-4622(00)00142-3

10.1021/bi951767k

10.1021/bi970719s

10.1063/1.445988

10.1016/0022-2836(79)90265-1

10.1073/pnas.96.25.14324

10.1021/ja00181a020

10.1038/228726a0

10.1073/pnas.95.9.4795

10.1021/bi00695a021

10.1021/bi00564a001

10.1021/bi00359a011

10.1016/0301-4622(87)80034-0

10.1021/bi00183a017

10.1073/pnas.89.7.2902

10.1126/science.274.5293.1726

10.1021/jp983649n

10.1002/ijch.199800021

10.1364/JOSAB.15.001791

10.1016/0921-4526(95)00812-8

10.1021/bi00159a010

10.1016/0301-4622(88)87025-X

10.1016/0301-0104(93)E0414-Q

10.1021/jp990676k

10.1021/je00027a005

10.1016/S0031-8914(40)90098-2

10.1021/bi00399a043

10.1016/0301-4622(90)88008-G

10.1016/S0006-3495(93)81223-2

Sakakura M. Yamaguchi S. Hirota N. & Terazima M. (2001) J. Am. Chem. Soc . in press.

10.1103/PhysRevLett.68.408

10.1073/pnas.82.15.5000

10.1021/ar00041a005