Differentiation and cell wall degrading enzymes in the obligately biotrophic rust fungus Uromyces viciae-fabae

Canadian Science Publishing - Tập 73 Số S1 - Trang 624-631 - 1995
H. B. Deising, Martina Rauscher, Marc Haug, Stefan Heiler

Tóm tắt

Rust fungi differentiate a series of complex infection structures to infect their host plants. Artificial membranes providing a signal for the induction of infection structure differentiation have been used to study events taking place during early stages of host–pathogen interaction. During the prepenetration phase, serine esterases, one of which shows cutinase activity, appear to be important for adhesion of uredospores of Uromyces viciae-fabae to the plant cuticle. When the fungus grows through the stomatal opening, chitin deacetylase activity increases drastically. The role of this enzyme in masking and preventing degradation of fungal structures by plant chitinases is discussed. Different isoforms of protease, cellulase, and pectin methylesterases (PME) are formed when the fungus enters the intercellular space, and synthesis of polygalacturonate lyase (PL) coincides with formation of haustorial mother cells. Based on the physicochemical and catalytic properties of these cell wall degrading enzymes a model is presented that explains highly localized breaching of plant cell walls by obligate biotrophs. cDNAs corresponding to genes activated during late stages of infection structure differentiation of Uromyces viciae-fabae have been isolated by differential hybridization. The transcripts of the genes designated rif16 and rif21 occur when haustorial mother cells are formed, and the corresponding gene products may thus be important for successful infection. Key words: adhesion, cell wall degrading enzymes, chitin deacetylase, infection structure differentiation, penetration process, rif genes.

Từ khóa


Tài liệu tham khảo

Allen E.A., 1991, Phytopathology, 81, 323, 10.1094/Phyto-81-323

Aloni B., 1988, Plant Physiol., 88, 367, 10.1104/pp.88.2.367

Apel P.C., 1993, Mol. Plant-Microbe Interact., 6, 467, 10.1094/MPMI-6-467

Ball A.M., 1991, Physiol. Mol. Plant Pathol., 38, 147, 10.1016/S0885-5765(05)80132-8

Benhamou N., 1991, Plant Physiol., 97, 234, 10.1104/pp.97.1.234

Bhairi S.M., 1989, Gene, 81, 237, 10.1016/0378-1119(89)90184-4

Bugbee W.M., 1990, Physiol. Mol. Plant Pathol., 36, 15, 10.1016/0885-5765(90)90088-F

Carpita N.C., 1993, Plant J., 3, 1, 10.1111/j.1365-313X.1993.tb00007.x

Chong J., 1981, Phytopathology, 71, 975, 10.1094/Phyto-71-975

Deising H., 1995, Microbiol. Lett. In press.

Deising H., 1991, Arch. Microbiol., 155, 191, 10.1007/BF00248616

Deising H., 1992, Plant Cell, 4, 1101, 10.2307/3869478

Deising H., 1995, Microbiology, 141, 561, 10.1099/13500872-141-3-561

Delrot S., 1983, Physiol. Veg., 21, 459

Freytag S., 1991, Protoplasma, 161, 94, 10.1007/BF01322722

Fri E, F., 1994, J. Phytopathol., 140, 1, 10.1111/j.1439-0434.1994.tb00170.x

Frittrang A.K., 1992, J. Gen. Microbiol., 138, 2213, 10.1099/00221287-138-10-2213

Gough C.L., 1988, Mol. Plant-Microbe Interact., 1, 275, 10.1094/MPMI-1-275

Hadwiger L.A., 1981, Physiol. Plant Pathol., 19, 249, 10.1016/S0048-4059(81)80028-8

Heiler S., 1993, Mycol. Res., 97, 77, 10.1016/S0953-7562(09)81116-7

Hippe-Sanwald S., 1994, Protoplasma, 178, 138, 10.1007/BF01545964

Judelson H.S., 1990, Mol. Plant-Microbe Interact., 3, 225, 10.1094/MPMI-3-225

Koch E., 1990, Plant Cell, 2, 437

Lee Y.-H., 1993, Exp. Mycol., 17, 215, 10.1006/emyc.1993.1020

Liners F., 1991, Micron Microsc. Acta, 22, 265, 10.1016/0739-6260(91)90014-Q

Liu Z., 1993, Mol. Plant-Microbe Interact., 6, 84, 10.1094/MPMI-6-084

Mauch F., 1988, Plant Physiol., 88, 936, 10.1104/pp.88.3.936

McClendon J ., 1979, Plant Physiol., 63, 74, 10.1104/pp.63.1.74

McKeen W.E., 1969, Can. J. Bot., 47, 701, 10.1139/b69-099

Mendgen K., 1993, New Phytol., 124, 193, 10.1111/j.1469-8137.1993.tb03809.x

Nicholson R.L., 1988, Exp. Mycol., 12, 336, 10.1016/0147-5975(88)90025-4

Pascholati S.F., 1992, Physiol. Mol. Plant Pathol., 41, 53, 10.1016/0885-5765(92)90048-Z

Ride J.P., 1990, Plant Sci., 71, 185, 10.1016/0168-9452(90)90008-C

Roberts D.P., 1988, J. Bacteriol., 170, 1445, 10.1128/JB.170.4.1445-1451.1988

Robertsen B., 1984, Physiol. Plant Pathol., 24, 83, 10.1016/0048-4059(84)90076-6

Short J.M., 1988, Nucleic Acids. Res., 16, 7583, 10.1093/nar/16.15.7583

Showalter A.M., 1993, Plant Cell, 5, 9

Siegrist J., 1990, Physiol. Mol. Plant Pathol., 36, 267, 10.1016/0885-5765(90)90058-6

Taylor J., 1991, Can. J. Bot., 69, 1207, 10.1139/b91-155

Tetlow I.J., 1993, J. Exp. Bot., 44, 929, 10.1093/jxb/44.5.929

Trudel J., 1990, Anal. Biochem., 189, 249, 10.1016/0003-2697(90)90116-Q

Van Sumere C.F., 1957, Can. J. Microbiol., 3, 761, 10.1139/m57-086

Walker D.S., 1994, Mol. Plant-Microbe Interact., 7, 425, 10.1094/MPMI-7-0425

Walton J.D., 1994, Plant Physiol., 104, 1113, 10.1104/pp.104.4.1113

Wijesundera R.L.C., 1989, Physiol. Mol. Plant Pathol., 34, 403, 10.1016/0885-5765(89)90067-2

Xuei X., 1992, Gene, 110, 49, 10.1016/0378-1119(92)90443-S