Differential response of chili pepper genotypes to single and combined association with the mycorrhizal fungus Rhizophagus irregularis and the root pathogen Phytophthora capsici

Rhizosphere - Tập 23 - Trang 100579 - 2022
Alfredo Reyes Tena1, José Manuel Gutiérrez Ortega1, Marcela Sarabia1, Pablo Jaramillo Lopez2, Sylvia Patricia Fernández Pavia3, Nuria Gómez Dorantes3, Gerardo Rodríguez Alvarado3, John Larsen1
1Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, CP, 58190, Morelia, Michoacán, Mexico
2CONACYT-Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701C.P, 58190, Morelia, Michoacán, Mexico
3Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5, Carretera Morelia-Zinapécuaro, Tarímbaro, Michoacán, C P, 58880, Mexico

Tài liệu tham khảo

Aguilar-Meléndez, 2009, Genetic diversity and structure in semiwild and domesticated chilies (Capsicum annuum; Solanaceae) from Mexico, Am. J. Bot., 96, 1190, 10.3732/ajb.0800155 Amon-Armah, 2014, Comparison of crop yield and pollution production response to nitrogen fertilization models, accounting for crop rotation effect, Agroecol. Sustain. Food Syst., 39, 245, 10.1080/21683565.2014.967435 Arias, 2012, Diversity and abundance, of arbuscular mycorrhizal fungi spores under different coffee production systems and in tropical montane cloud forest patch in Veracruz, Mexico, Agrofor. Syst., 85, 179, 10.1007/s10457-011-9414-3 Baum, 2015, Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review, Sci. Hortic., 187, 131, 10.1016/j.scienta.2015.03.002 Battini, 2017, Facilitation of phosphorous uptake in maize plants by mycorrhizosphere bacteria, Sci. Rep., 7, 4686, 10.1038/s41598-017-04959-0 Begum, 2019, Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications, Plants, 8, 579, 10.3390/plants8120579 Beltrano, 2013, Effects of arbuscular mycorrhizal inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels, J. Soil Sci. Plant Nutr., 13, 123 Boonlue, 2012, Diversity and efficiency of arbuscular mycorrhizal fungi in soils from organic chili (Capsicum frutescens) farms, Mycoscience, 53, 10, 10.1007/s10267-011-0131-6 Bosland, 1991, A seedling screen for Phytophthora root rot of pepper, Capsicum annuum, Plant Dis., 75, 1048, 10.1094/PD-75-1048 Boutaj, 2020, Arbuscular mycorrhizal fungi improve mineral nutrition and tolerance of olive tree to Verticillium wilt, Arch. Phytopathol. Plant Protect., 53, 673, 10.1080/03235408.2020.1792603 Cameron, 2013, Mycorrhiza-induced resistance: more than the sum of its parts?, Trends Plant Sci., 18, 539, 10.1016/j.tplants.2013.06.004 Carballar-Hernández, 2017, Native communities of arbuscular mycorrhizal fungi associated with Capsicum annuum L. respond to soil properties and agronomic management under field conditions, Agric. Ecosyst. Environ., 245, 43, 10.1016/j.agee.2017.05.004 Carballar-Hernández, 2018, Species composition of native arbuscular mycorrhizal fungal consortia influences growth and nutrition of poblano pepper plants (Capsicum annuum L.), Appl. Soil Ecol., 130, 50, 10.1016/j.apsoil.2018.05.022 Davies, 2002, Alleviation of drought stress of Chile ancho pepper (Capsicum annuum L. cv. San Luis) with arbuscular mycorrhizal indigenous to Mexico, Sci. Hortic., 92, 347, 10.1016/S0304-4238(01)00293-X Elsen, 2008, AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect, Mycorrhiza, 18, 251, 10.1007/s00572-008-0173-6 Estrada-Luna, 2003, Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated Chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization, J. Plant Physiol., 160, 1073, 10.1078/0176-1617-00989 Giovanetti, 1980, An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots, New Phytol., 84, 489, 10.1111/j.1469-8137.1980.tb04556.x Gliessman, 2016, Transforming food systems with agroecology, Agroecol. Sustain. Food Syst., 40, 187, 10.1080/21683565.2015.1130765 Goicoechea, 2010, Review. Arbuscular mycorrhizal fungi (AMF) as bioprotector agents against wilt induced by Verticillium spp. in pepper. Span, J. Agric. Res., 8, S25 Gómez-Rodríguez, 2017, Differential response of pepper (Capsicum annuum L.) lines to Phytophthora capsici and root-knot nematodes, Crop Protect., 92, 148, 10.1016/j.cropro.2016.10.023 Jun-Li, 2010, Arbuscular mycorrhizal fungal inoculation enhances suppression of cucumber Fusarium wilt in greenhouse soils, Pedosphere, 20, 586, 10.1016/S1002-0160(10)60048-3 Jung, 2012, Mycorhiza-induced resistance and priming of plant defenses, J. Chem. Ecol., 38, 651, 10.1007/s10886-012-0134-6 Karyotis, 2014, Nitrogen fertilization plains fir the main crops of Turkey to mitigate nitrates pollution, Eurasian J.Soil Sci., 3, 13 Kaya, 2009, The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants growth at high salinity, Sci. Hortic., 121, 1, 10.1016/j.scienta.2009.01.001 Komanik, 1982, Quantification of vesicular arbuscular mycorrhiza in plant roots, 37 Kraft, 2014, Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico, Proc. Natl. Acad. Sci. USA, 111, 6165, 10.1073/pnas.1308933111 Kumar, 2018, Biofertilizers and biopesticides in sustainable agriculture Lamour, 2012, The oomycete broad-host-range pathogen Phytophthora capsici, Mol. Plant Pathol., 13, 329, 10.1111/j.1364-3703.2011.00754.x Larsen, 2012, Biocontrol traits of plant growth suppressive arbuscular mycorrhizal fungi against root rot in tomato caused by Pythium aphanidermatum, Eur. J. Plant Pathol., 133, 361, 10.1007/s10658-011-9909-9 Li, 2017, Worldwide regulations of standard values of pesticides for human health risk control: a review, Int. J. Environ. Res. Publ. Health, 14, 826, 10.3390/ijerph14070826 Manrique-Tamayo, 2014, La agroecología como propuesta de modelo de producción aplicado al cultivo de Chile habanero en Peto, Yucatán. Rev.Mex. Agroneg., 35, 969 Mathimaran, 2017, Arbuscular mycorrhizal symbiosis and drought tolerance in crop plants, Mycosphere, 8, 361, 10.5943/mycosphere/8/3/2 Morán-Bañuelos, 2010, Resistencia a Phytophthora capsici Leo. de chiles nativos del sur de Puebla, México. Rev. Fitotec. Mex., 33, 21 Moreno-Pérez, 2011, Diversidad morfológica en colectas de Chile guajillo (Capsicum annuum L.) del centro-norte de México, Rev. Chapingo Ser. Hortic., 17, 23, 10.5154/r.rchsh.2011.17.004 Nedorost, 2014, Influence of watering regime and mycorrhizal inoculation on growth and nutrient uptake of pepper (Capsicum annuum L.), Acta Hortic., 1038, 559, 10.17660/ActaHortic.2014.1038.70 Nicolopoulou-Stamati, 2016, Chemical pesticides and human health: the urgent need for a new concept in agriculture, Publ. Health Forum, 4, 148 Oelke, 2003, Differentiation of race specific resistance to Phytophthora root rot and foliar blight in Capsicum annuum, J. Am. Soc. Hortic. Sci., 128, 213, 10.21273/JASHS.128.2.0213 Palma-Martínez, 2017, Resistencia a Phytophthora capsici Leo en líneas de Chile huacle (Capsicum annuum L.), Rev. Fitotec. Mex., 40, 359 Ravnskov, 2020, Mycorrhiza induced tolerance in Cucumis sativus against root rot caused by Pythium ultimum depends on fungal species in the arbuscular mycorrhizal symbiosis, Biol. Control, 104 Reyes-Tena, 2019, Virulence phenotypes on chili pepper for Phytophthora capsici isolates from Michoacán, Mexico, Hortscience, 54, 1526, 10.21273/HORTSCI13964-19 Reyes-Tena, 2017, Effect of mycorrhizae and actinomycetes on growth and bioprotection of Capsicum annuum L. against Phytophthora capsici, Pakistan J. Agric. Sci., 54, 513 Reyes-Tena, 2021, Tolerance to virulence phenotypes of Phytophthora capsici in pasilla pepper cultivars, Hortscience, 56, 1239, 10.21273/HORTSCI15998-21 Retes-Manjarrez, 2020, Novel sources of resistant to Phytophthora capsici on pepper (Capsicum sp.) landraces from Mexico, Plant Pathol. J., 36, 600, 10.5423/PPJ.OA.07.2020.0131 Ruiz-Lozano, 2012, Contribution of arbuscular mycorrhizal simbiosis to plant drought tolerance: state of the art Sensoy, 2007, Responses of some different pepper (Capsicum annuum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi, Sci. Hortic., 113, 92, 10.1016/j.scienta.2007.01.023 Smith, 2008 Song, 2015, Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus, Front. Plant Sci., 6, 786, 10.3389/fpls.2015.00786 Sun, 2018, Reduced phloem uptake of Myzus persicae on an aphid resistant pepper accession, BMC Plant Biol., 18, 138, 10.1186/s12870-018-1340-3 Thygesen, 2004, Arbuscular mycorrhizal fungi reduce development of pea root-rot caused by Aphanomyces euteiches using oospores as pathogen inoculum, Eur. J. Plant Pathol., 110, 411, 10.1023/B:EJPP.0000021070.61574.8b Vos, 2012, Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans, Appl. Soil Ecol., 61, 1, 10.1016/j.apsoil.2012.04.007 Vyas, 2012, Diversity of arbuscular mycorrhizal fungi associated with rhizosphere of Capsicum annuum in western Rajasthan, Int. J. Plant Animal Env. Sci., 2, 256 Zeng, 2006, Disease resistance in plants through mycorrhizal fungi induced allelochemicals, vol. 2