Differential proteomics for studying action mechanisms of traditional Chinese medicines
Tóm tắt
Từ khóa
Tài liệu tham khảo
Righetti PG, Castagna A, Antonucci F, Piubelli C, Cecconi D, Campostrini N, et al. The proteome: Anno Domini 2002. Clin Chem Lab Med. 2003;41:425–38.
Liu X, Guo DA. Application of proteomics in the mechanistic study of traditional Chinese medicine. Biochem Soc Trans. 2011;39:1348–52.
Lao YZ, Wang XY, Xu NH, Zhang HM, Xu HX. Application of proteomics to determine the mechanism of action of traditional Chinese medicine remedies. J Ethnopharmacol. 2014;155:1–8.
Ji Q, Zhu F, Liu X, Li Q, Su SB. Recent advance in applications of proteomics technologies on traditional Chinese medicine research. Evid Based Complement Altern Med. 2015;2015:983139.
Xie XB, Yin JQ, Wen LL, Gao ZH, Zou CY, Wang J, et al. Critical role of heat shock protein 27 in Bufalin-induced apoptosis in human osteosarcomas: a proteomic-based research. PLoS ONE. 2012;7:e47375.
Shiau JY, Yin SY, Chang SL, Hsu YJ, Chen KW, Kuo TF, et al. Mechanistic study of the phytocompound, 2-β-d-glucopyranosyloxy-1-hydroxytrideca-5,7,9,11-tetrayne in human T-cell acute lymphocytic leukemia cells by using combined differential proteomics and bioinformatics approaches. Evid Based Complement Altern Med. 2015;2015:475610.
Chou HC, Lu CH, Su YC, Lin LH, Yu HI, Chuang HH, et al. Proteomic analysis of honokiol-induced cytotoxicity in thyroid cancer cells. Life Sci. 2018;207:184–204.
Wang H, Ye Y, Pan SY, Zhu GY, Li YW, Fong DW, Yu ZL. Proteomic identification of proteins involved in the anticancer activities of oridonin in HepG2 cells. Phytomedicine. 2011;18:163–9.
Zhao J, Zhang M, He PC, Zhao JJ, Chen Y, Qi J, Wang Y. Proteomic analysis of oridonin-induced apoptosis in multiple myeloma cells. Mol Med Rep. 2017;15:1807–15.
Liu JS, He SC, Zhang ZL, Chen R, Fan L, Qiu GL, et al. Anticancer effects of β-elemene in gastric cancer cells and its potential underlying proteins: a proteomic study. Oncol Rep. 2014;32:2635–47.
Qi HY, Chen L, Ning L, Ma H, Jiang ZY, Fu Y, Li L. Proteomic analysis of β-asarone induced cytotoxicity in human glioblastoma U251 cells. J Pharm Biomed Anal. 2015;115:292–9.
Li FQ, Zhao DX, Yang SW, Wang J, Liu Q, Jin X, Wang W. ITRAQ-based proteomics analysis of triptolide on human A549 lung adenocarcinoma cells. Cell Physiol Biochem. 2018;45:917–34.
Li GQ, Xie BB, Li XL, Chen YH, Xu YH, Xu-Welliver M, Zou LJ. Downregulation of peroxiredoxin-1 by β-elemene enhances the radiosensitivity of lung adenocarcinoma xenografts. Oncol Rep. 2015;33:1427–33.
Yao Y, Wu WY, Guan SH, Jiang BH, Yang M, Chen XH, et al. Proteomic analysis of differential protein expression in rat platelets treated with notoginsengnosides. Phytomedicine. 2008;15:800–7.
Yao Y, Liu AH, Wu WY, Guan SH, Jiang BH, Yang M, et al. Possible target-related proteins of salvianolic acids in rat platelets. Phytochem Lett. 2008;1:135–8.
Ma C, Yao Y, Yue QX, Zhou XW, Yang PY, Wu WY, et al. Differential proteomic analysis of platelets suggested possible signal cascades network in platelets treated with salvianolic acid B. PLoS ONE. 2011;6:e14692.
De Roos B, Zhang XG, Rodriguez Gutierrez G, Wood S, Rucklidge GJ, Reid MD, et al. Anti-platelet effects of olive oil extract: in vitro functional and proteomic studies. Eur J Nutr. 2011;50:553–62.
Li CH, Chen C, Zhang Q, Tan CN, Hu YJ, Li P, et al. Differential proteomic analysis of platelets suggested target-related proteins in rabbit platelets treated with Rhizoma Corydalis. Pharm Biol. 2016;55:76–87.
Tan CN, Zhang Q, Li CH, Fan JJ, Yang FQ, Hu YJ, Hu G. Potential target-related proteins in rabbits platelets treated with active monomers dehydrocorydaline and canadine from Rhizoma corydalis. Phytomedicine. 2019;54:231–9.
Ruan L, Huang HS, Jin WX, Chen HM, Li XJ, Gong QJ. Tetrandrine attenuated cerebral ischemia/reperfusion injury and induced differential proteomic changes in a MCAO mice model using 2-D DIGE. Neurochem Res. 2013;38:1871–9.
Chen HJ, Shen YC, Shiao YJ, Liou KT, Hsu WH, Hsieh PH, et al. Multiplex brain proteomic analysis revealed the molecular therapeutic effects of Buyang Huanwu Decoction on cerebral ischemic stroke mice. PLoS ONE. 2015;10:e0140823.
Qi HY, Li L, Yu J, Chen L, Huang YL, Ning L, et al. Proteomic identification of Nrf2-mediated phase II enzymes critical for protection of Tao Hong Si Wu Decoction against oxygen glucose deprivation injury in PC12 cells. Evid Based Complement Altern Med. 2014;2014:945814.
Yue QX, Xie FB, Song XY, Wu WY, Jiang BH, Guan SH, et al. Proteomic studies on protective effects of salvianolic acids, notoginsengnosides and combination of salvianolic acids and notoginsengnosides against cardiac ischemic–reperfusion injury. J Ethnopharmacol. 2012;141:659–67.
Sun H, Zhang AH, Yan GL, Han Y, Sun WJ, Ye Y, Wang XJ. Proteomics study on the hepatoprotective effects of traditional Chinese medicine formulae Yin-Chen-Hao-Tang by a combination of two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. J Pharm Biomed Anal. 2013;75:173–9.
Xie HD, Tao YY, Lv J, Liu P, Liu CH. Proteomic analysis of the effect of Fuzheng Huayu Recipe on fibrotic liver in rats. Evid Based Complement Altern Med. 2013;2013:972863.
Dong S, Cai FF, Chen QL, Song YN, Sun Y, Wei B, et al. Chinese herbal formula Fuzheng Huayu alleviates CCl4-induced liver fibrosis in rats: a transcriptomic and proteomic analysis. Acta Pharmacol Sin. 2018;39:930–41.
Liu XJ, Shi Y, Hu YH, Luo K, Guo Y, Meng WW, et al. Bupleurum marginatum Wall.ex DC in liver fibrosis: pharmacological evaluation, differential proteomics, and network pharmacology. Front Pharmacol. 2018;9:524.
Hsiao CY, Hung CY, Tsai TH, Chak KF. A study of the wound healing mechanism of a traditional Chinese medicine, Angelica sinensis, using a proteomic approach. Evid Based Complement Altern Med. 2012;2012:467531.
Hsiao CY, Tsai TH, Chak KF. The molecular basis of wound healing processes induced by Lithospermi Radix: a proteomics and biochemical analysis. Evid Based Complement Altern Med. 2012;2012:508972.
Chen L, Hou Q, Zhou ZZ, Li MR, Zhong LZ, Deng XD, et al. Comparative proteomic analysis of the effect of the Four-Herb Chinese medicine ANBP on promoting mouse skin wound healing. Int J Low Extrem Wound. 2017;16:154–62.
Tam JCW, Ko CH, Zhang C, Wang H, Lau CP, Chan WY, et al. Comprehensive proteomic analysis of a Chinese 2-herb formula (Astragali Radix and Rehmanniae Radix) on mature endothelial cells. Proteomics. 2014;14:2089–103.
Zhao J, Cai CK, Xie M, Liu JN, Wang BZ. Investigation of the therapy targets of Yi-Qi-Yang-Yin-Hua-Tan-Qu-Yu recipe on type 2 diabetes by serum proteome labeled with iTRAQ. J Ethnopharmacol. 2018;224:1–14.
Zhang XY, Sun HD, Paul SK, Wang QH, Lou XM, Hou GX, et al. The serum protein responses to treatment with Xiaoke Pill and Glibenclamide in type 2 diabetes patients. Clin Proteomics. 2017;14:19.
Ku WC, Chang YL, Wu SF, Shih HN, Tzeng YM, Kuo HR, et al. A comparative proteomic study of secretomes in kaempferitrin-treated CTX TNA2 astrocytic cells. Phytomedicine. 2017;36:137–44.
Lian F, Wu HC, Sun ZG, Guo Y, Shi L, Xue MY. Effects of Liuwei Dihuang Granule on the outcomes of in vitro fertilization pre-embryo transfer in infertility women with Kidney-yin deficiency syndrome and the proteome expressions in the follicular fluid. Chin J Integr Med. 2014;20:503–9.
Zhang AH, Zhou XH, Zhao HW, Zou SY, Ma CW, Liu Q, et al. Metabolomics and proteomics technologies to explore the herbal preparation affecting metabolic disorders using high resolution mass spectrometry. Mol Biosyst. 2017;13:320–9.
Liu CM, Chen J, Yang S, Mao LG, Jiang TT, Tu HH, et al. The Chinese herbal formula Zhibai Dihuang Granule treat Yin-deficiency-heat syndrome rats by regulating the immune responses. J Ethnopharmacol. 2018;225:271–8.
Li RM, Zhao LL, Wu N, Wang RY, Cao X, Qiu XJ, Wang DS. Proteomic analysis allows for identifying targets of Yinchenwuling Powder in hyperlipidemic rats. J Ethnopharmacol. 2016;185:60–7.
Kim SW, Park TJ, Chaudhari HN, Choi JH, Choi JY, Kim YJ, et al. Hepatic proteome and its network response to supplementation of an anti-obesity herbal mixture in diet-induced obese mice. Biotechnol Bioprocess Eng. 2015;20:775–93.
Chen C, Hu Y, Dong XZ, Zhou XJ, Mu LH, Liu P. Proteomic analysis of the antidepressant effects of Shen–Zhi–Ling in depressed patients: identification of proteins associated with platelet activation and lipid metabolism. Cell Mol Neurobiol. 2018;38:1123–35.
Zhao P, Li JS, Yang LP, Li Y, Tian YG, Li SY. Integration of transcriptomics, proteomics, metabolomics and systems pharmacology data to reveal the therapeutic mechanism underlying Chinese herbal Bufei Yishen formula for the treatment of chronic obstructive pulmonary disease. Mol Med Rep. 2018;17:5247–57.
Zhang SD, Wang DS, Dong SW, Yang ZQ, Yan ZT. iTRAQ-based quantitative proteomic analysis reveals Bai-Hu-Tang enhances phagocytosis and cross-presentation against LPS fever in rabbit. J Ethnopharmacol. 2017;207:1–7.
Liu QX, Zhang W, Wang J, Hou W, Wang YP. A proteomic approach reveals the differential protein expression in Drosophila melanogaster treated with red ginseng extract (Panax ginseng). J Ginseng Res. 2018;42:343–51.
International Agency for Research on Cancer, World Health Organization. http://gco.iarc.fr/today/home . Accessed to the website in 2018.
Liu J, Wang S, Zhang Y, Fan HT, Lin HS. Traditional Chinese medicine and cancer: history, present situation, and development. Thorac Cancer. 2015;6:561–9.
Zhang Y, Liang Y, He C. Anticancer activities and mechanisms of heat-clearing and detoxicating traditional Chinese herbal medicine. Chin Med. 2017;12:20.
Liu Y, Yin HJ, Chen KJ. Platelet proteomics and its advanced application for research of blood stasis syndrome and activated blood circulation herbs of Chinese medicine. Sci China Life Sci. 2013;56:1000–6.
Kobayashi S, Kawasaki Y, Takahashi T, Maeno H, Nomura M. Mechanisms for the anti-obesity actions of bofutsushosan in high-fat diet-fed obese mice. Chin Med. 2017;12:8.
Lim C, Lim S, Lee B, Kim B, Cho S. Effect of methanol extract of Salviae miltiorrhizae Radix in high-fat diet-induced hyperlipidemic mice. Chin Med. 2017;12:29.
Tang JF, Li WX, Zhang F, Li YH, Cao YJ, Zhao Y, et al. Discrimination of Radix Polygoni Multiflori from different geographical areas by UPLC-QTOF/MS combined with chemometrics. Chin Med. 2017;12:34.
Li YY, Di R, Hsu WL, Huang YQ, Cheung HY. Quality control of Lycium chinense and Lycium barbarum cortex (Digupi) by HPLC using kukoamines as markers. Chin Med. 2017;12:4.
Li CH, Chen C, Xia ZN, Yang FQ. Research progress of pharmacological activities and analytical methods for plant origin proteins. China J Chin Mater Med. 2015;40:2508–17.
Zhang SW, Lai XT, Li BF, Wu C, Wang SF, Chen XJ, et al. Application of differential proteomic analysis to authenticate Ophiocordyceps sinensis. Curr Microbiol. 2016;72:337–43.
Li CH. Analysis of proteins in three fungi traditional Chinese medicines by gel electrophoresis. Chongqing: Chongqing University; 2016.
Tong XX, Wang YX, Xue ZY, Chen L, Qiu Y, Cao J, et al. Proteomic identification of marker proteins and its application to authenticate Ophiocordyceps sinensis. 3 Biotech. 2018;8:246.
Zhang X, Liu Q, Zhou W, Li P, Alolga RN, Qi LW, Yin XJ. A comparative proteomic characterization and nutritional assessment of naturally- and artificially-cultivated Cordyceps sinensis. J Proteomics. 2018;181:24–35.
Li CH, Zuo HL, Chen C, Hu YJ, Qian ZM, Li WJ, et al. SDS-PAGE and 2-DE protein profiles of Ganoderma lucidum from different origins. Pak J Pharm Sci. 2018;31:447–54.
Fan JJ, Li CH, Hu G, Tan CN, Yang FQ, Chen H, Xia ZN. Comparative analysis of soluble proteins in four medicinal Aloe species by two-dimensional electrophoresis and MALDI-TOF-MS. J AOAC Int. 2019. https://doi.org/10.5740/jaoacint.18-0310 .
Lum JH, Fung KL, Cheung PY, Wong MS, Lee CH, Kwok FS, et al. Proteome of Oriental ginseng Panax ginseng C. A. Meyer and the potential to use it as an identification tool. Proteomics. 2002;2:1123–30.
Hua YJ, Wang SN, Liu ZX, Liu XH, Zou LS, Gu W, et al. iTRAQ-based quantitative proteomic analysis of cultivated Pseudostellaria heterophylla and its wild-type. J Proteomics. 2016;139:13–25.
Zheng J. Analysis and identification of proteins in three gelatinous Chinese medicines. Jiangsu: Jiangsu University; 2017.
Li X, Shi F, Gong LP, Hang BJ, Li DY, Chi LL. Species-specific identification of collagen components in Colla corii asini using a nano-liquid chromatography tandem mass spectrometry proteomics approach. Int J Nanomed. 2017;12:4443–54.
Xu JY, Dai C, Shan JJ, Xie T, Xie HH, Wang MM, Yang G. Determination of the effect of Pinellia ternata (Thunb.) Breit. on nervous system development by proteomics. J Ethnopharmacol. 2018;213:221–9.
Li X, Li X, Lu J, Huang Y, Lv L, Luan Y, et al. Saikosaponins induced hepatotoxicity in mice via lipid metabolism dysregulation and oxidative stress: a proteomic study. BMC Complement Altern Med. 2017;17:219.
Wu X, Wang S, Lu J, Jing Y, Li M, Cao J, et al. Seeing the unseen of Chinese herbal medicine processing (Paozhi): advances in new perspectives. Chin Med. 2018;13:4.
Zhang Y, Wang Y, Li SJ, Zhang XT, Li WH, Luo SX, et al. ITRAQ-based quantitative proteomic analysis of processed Euphorbia lathyris L. for reducing the intestinal toxicity. Proteome Sci. 2018;16:8.
Jin MY. Study on differential proteomic and anti-fatigue activity of different processions of pilose antler. Beijing: Beijing University of Chinese Medicine; 2015.
Xu Y. Differential analysis of proteins in Bombyx batryticatus before and after processing. Jiangsu: Jiangsu University; 2016.
Fu ZR, Zhang L, Liu XB, Zhang YZ, Zhang QL, Li XM, et al. Comparative proteomic analysis of the sun- and freeze-dried earthworm Eisenia fetida with differentially thrombolytic activities. J Proteomics. 2013;83:1–14.
Hong CT. A comparative proteomic study to identify synergistic effects of active components from YI-SHEN-YI-QI formula. Zhejiang: Zhejiang University; 2010.
Miao Q, Zhao YY, Miao PP, Chen N, Yan XH, Guo CE, et al. Proteomics approach to analyze protein profiling related with ADME/Tox in rat treated with Scutellariae Radix and Coptidis Rhizoma as well as their compatibility. J Ethnopharmacol. 2015;173:241–50.
Yu JG. Basic research of TCM incompatibility of “Zao Ji Sui Yuan Ju Zhan Cao” biological mechanisms based on gut-gut microbiota and aquaporin proteins. Jiangsu: Nanjing University of Traditional Chinese Medicine; 2018.
Huang T, Zhong LLD, Lin CY, Zhao L, Ning ZW, Hu DD, et al. Approaches in studying the pharmacology of Chinese Medicine formulas: bottom-up, top-down-and meeting in the middle. Chin Med. 2018;13:15.