Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Quang phổ chuyển động khác biệt với nguồn ion nanospray như một thiết bị phát hiện tổng hợp cho các hợp chất hữu cơ và vô cơ nhỏ
Tóm tắt
Ion hóa phun điện (ESI) là một công cụ quan trọng trong khảo sát hóa học và sinh hóa cũng như phân tích có mục tiêu trong nhiều ứng dụng. Đối với việc phát hiện và xác định hóa chất, ESI thường được sử dụng kết hợp với phổ khối (MS). Tuy nhiên, để sàng lọc và giám sát các hóa chất quan tâm trong các thiết bị có công suất thấp, dễ triển khai tại hiện trường, một công nghệ phát hiện thay thế có tính chọn lọc hóa học sẽ rất hữu ích, đặc biệt là khi các công nghệ mô đun hóa khí và lỏng nhẹ, nhỏ gọn dựa trên chip đang được phát triển. Danh sách ban đầu của chúng tôi về các ứng dụng yêu cầu thiết bị di động bao gồm khảo sát hóa học trên sao Hỏa, chẩn đoán y tế dựa trên các chất chuyển hóa trong mẫu sinh học, và phân tích chất lượng nước. Trong báo cáo này, chúng tôi đánh giá phổ chuyển động khác biệt ion hóa ESI (DMS) như một giải pháp thay thế nhỏ gọn và tiêu thụ điện năng thấp cho việc phát hiện MS. Việc sử dụng DMS cho việc phát hiện chọn lọc hóa học ESI phải chịu sự hạn chế hơn so với phổ khối vì khả năng đỉnh của phổ khối di động lớn gấp 10 lần hoặc hơn so với DMS, nhưng sự phát triển của công nghệ sắc ký chip nhẹ và nhanh đem lại độ phân giải bù đắp. DMS độc lập cung cấp tính chọn lọc hóa học quen thuộc từ các công bố DMS-MS và tận dụng tính nhạy cảm của việc phát hiện ion. Chúng tôi tìm thấy rằng các dòng dưới một microlit mỗi phút và một giao diện được thiết kế đúng cách chuẩn bị một dòng ion đã loại bỏ dung môi giúp DMS hoạt động như một bộ lọc ion hiệu quả. Kết quả cho một số biomarkers hữu cơ nhỏ và các chất chuyển hóa, bao gồm axit citric, axit azelaic, n-hexanoylglycine, thymidine và caffeine, cũng như các hợp chất như dinitrotoluene và những hợp chất khác đã được đặc trưng và cho thấy sự phát hiện chọn lọc. Các anion halogen có liên quan đến chất lượng nước như fluoride đến bromate, trong các mẫu lỏng cũng được DMS tách biệt. Một giao diện buồng phản ứng được nhấn mạnh là ứng dụng thực tế nhất cho thiết bị ESI-DMS di động.
Từ khóa
#ion hóa phun điện #phổ khối #quang phổ chuyển động khác biệt #phát hiện hóa chất #công nghệ sắc ký chipTài liệu tham khảo
Belov ME, Clowers BH, Prior DC, Danielson WF, Liyu AV, Petritis BO, Smith RD (2008) Dynamically multiplexed ion mobility time-of-flight mass spectrometry. Anal Chem 80(15):5873–5883. doi:10.1021/ac8003665
Brennen RA, Yin H, Killeen KP (2007) Microfluidic gradient formation for nanoflow chip LC. Anal Chem 79(24):9302–9309. doi:10.1021/ac0712805
Buryakov IA, Krylov EV, Makas AL, Nazarov EG, Pervukhin VV, Rasulev UK (1993) Drift spectrometer for the control of amine traces in the atmosphere. J Anal Chem 48(1):114–121
Bynum M, Staples G, Yin HF, Killeen K (2010) Microfluidic LC-MS chip combined with pngasef enzyme reactor and make-up flow for rapid detection of sialylated glycans from glycoproteins. Glycobiology 20(11):1471–1472
Cooks R, Ouyang Z, Noll R, Manicke N, Costa A, Wu C, Xia Y, Dill A, Ifa D (2009) Ambient ionization and miniature mass spectrometry: biomedical applications. Biopolymers 92(4):297–297
Covey TR, Thomson BA, Schneider BB (2009) Atmospheric pressure ion sources. Mass Spectrom Rev 28(6):870–897. doi:10.1002/mas.20246
Coy S, Cheema A, Tyburski J, Laiakis E, Collins S, Fornace A (2011) Radiation metabolomics and its potential in biodosimetry. Int J Radiat Biol 87(8):802–823. doi:10.3109/09553002.2011.556177
Coy SL, Cheema AK, Tyburski JB, Laiakis EC, Collins SP, Fornace AJ (2011) Radiation metabolomics and its potential in biodosimetry. Int J Radiat Biol 87(8):802–823. doi:10.3109/09553002.2011.556177
Coy SL, Krylov EV, Schneider BB, Covey TR, Brenner DJ, Tyburski JB, Patterson AD, Krausz KW, Fornace AJ, Nazarov EG (2010) Detection of radiation-exposure biomarkers by differential mobility prefiltered mass spectrometry (DMS-MS). Int J Mass Spectrom 291(3):108–117. doi:10.1016/j.ijms.2010.01.013
Dwivedi P, Wu C, Matz LM, Clowers BH, Siems WF, Hill HH (2006) Gas-phase chiral separations by ion mobility spectrometry. Anal Chem 78(24):8200–8206. doi:10.1021/ac0608772
Eiceman GA, Karpas Z (2005) Ion mobility spectrometry/G.A. Eiceman, Z. Karpas, vol 350. Taylor & Francis/CRC Press, Boca Raton
Gao L, Li G, Cooks RG (2010) Axial CID and high pressure resonance CID in miniature ion trap mass spectrometer using a discontinuous atmospheric pressure interface. J Am Soc Mass Spectrom 21(2):209–214
Gao L, Sugiarto A, Harper JD, Cooks RG, Ouyang Z (2008) Design and characterisation of a multisource hand-held tandem mass spectrometer. Anal Chem 80(19):7198–7205
Ghitun M, Bonneil E, Pomies C, Marcantonio M, Yin HF, Killeen K, Thibault P (2008) Modular microfluidics devices combining multidimensional separations: applications to targeted proteomics analyses of complex cellular extracts. Miniaturization and mass spectrometry. Royal Society of Chemistry, Cambridge. doi:10.1039/9781847558947-00173
Grimm R, Yin H, Killeen K, Ninonuevo M, Lebrilla C, Ossola R, Aebersold R (2005) High-resolution screening of various biomarker compounds by using a new HPLC-CHIP MS technology. Mol Cell Proteomics 4(8):S81–S81
Hall A, Coy S, Kafle A, Glick J, Nazarov E, Vouros P (2013) Extending the dynamic range of the ion trap by differential mobility filtration. J Am Soc Mass Spectrom. In press
Hall AB, Coy SL, Nazarov EG, Vouros P (2012) Development of rapid methodologies for the isolation and quantitation of drug metabolites by differential mobility spectrometry—mass spectrometry. Int J Ion Mobil Spectrom 15(3):151–156. doi:10.1007/s12127-012-0111-3
Kafle A, Klaene J, Hall AB, Glick J, Coy SL, Vouros P (2013) A differential mobility-mass spectrometry platform for the rapid detection and quantitation of DNA adduct dG-ABP. Rapid Commun Mass Spectrom. In press
Kanu A, Dwivedi P, Tam M, Matz L, Hill H (2008a) Ion mobility-mass spectrometry. J Mass Spectrom:1–22. doi:10.1002/jms.1383
Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH (2008) Ion mobility-mass spectrometry. J Mass Spectrom 43(1):1–22. doi:10.1002/jms.1383
Krylov E (2003) Comparison of the planar and coaxial field asymmetrical waveform ion mobility spectrometer (FAIMS). Int J Mass Spectrom 225:39–51
Krylov E (2012) Differential mobility spectrometer: optimization of the analytical characteristics. Int J Ion Mobil Spectrom 15(3):85–90. doi:10.1007/s12127-012-0099-8
Krylov EV, Coy SL, Nazarov EG (2009) Temperature effects in differential mobility spectrometry. Int J Mass Spectrom 279(2–3):119–125. doi:10.1016/j.ijms.2008.10.025
Krylov E, Coy S, Vandermey J, Schneider B, Covey T, Nazarov E (2010) Selection and generation of waveforms for differential mobility spectrometry. Rev Sci Instrum 81 (2). doi:10.1063/1.3284507
Krylov EV, Nazarov EG (2009) Electric field dependence of the ion mobility. Int J Mass Spectrom 285(3):149–156. doi:10.1016/j.ijms.2009.05.009
Lapthorn C, Pullen F, Chowdhry BZ (2013) Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: separating and assigning structures to ions. Mass Spectrom Rev 32(1):43–71. doi:10.1002/mas.21349
Levin DS, Vouros P, Miller RA, Nazarov EG (2007) Using a nanoelectrospray-differential mobility spectrometer-mass spectrometer system for the analysis of oligosaccharides with solvent selected control over ESI aggregate ion formation. J Am Soc Mass Spectrom 18(3):502–511. doi:10.1016/j.jasms.2006.10.008
Levin DS, Vouros P, Miller RA, Nazarov EG, Morris JC (2006) Characterization of gas-phase molecular interactions on differential mobility ion behavior utilizing an electrospray ionization-differential mobility-mass spectrometer system. Anal Chem 78(1):96–106. doi:10.1021/ac051217k
Limero T, Reese E, Wallace W, Cheng P, Trowbridge J (2012) Results from the air quality monitor (gas chromatograph-differential mobility spectrometer) experiment on board the international space station. Int J Ion Mobil Spectrom 15(3):189–198. doi:10.1007/s12127-012-0107-z
Mason EA, McDaniel EW (1988) Transport properties of ions in gases. Wiley-Interscience, New York
NASA Astrobiology: Life in the Universe (2012) National Aeronautics and Space Administration (NASA), NASA Astrobiology: Life in the Universe. https://astrobiology.nasa.gov/, https://astrobiology.nasa.gov/roadmap/, Accessed 13 Dec 2012
Nazarov EG, Coy SL, Krylov EV, Miller RA, Eiceman GA (2006) Pressure effects in differential mobility spectrometry. Anal Chem 78(22):7697–7706. doi:10.1021/ac061092z
Nazarov E, Miller R, Coy S, Krylov E, Kryuchkov S (2006) Software simulation of ion motion in DC and AC electric fields including fluid-flow effect (SIONEX microDMx software). Int J Ion Mobility Spectrom 9
Ouyang Z, Cooks RG (2009) Miniature mass spectrometers. Annu Rev Anal Chem 2(1):187–214. doi:10.1146/annurev-anchem-060908-155229
Page JS, Tang K, Kelly RT, Smith RD (2008) Subambient pressure ionization with nanoelectrospray source and interface for improved sensitivity in mass spectrometry. Anal Chem 80(5):1800–1805. doi:10.1021/ac702354b
Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH (2007) An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom 261(1):1–12. doi:10.1016/j.ijms.2006.07.021
Rorrer LC, Yost RA (2011) Solvent vapor effects on planar high-field asymmetric waveform ion mobility spectrometry. Int J Mass Spectrom 300(2–3):173–181. doi:10.1016/j.ijms.2010.04.002
Schneider BB, Covey TR (2012) High performance DMS/MS interface with chemically modified separations. http://wwwabsciexcom/Documents/Events/pittcon-Schneider-PittCon-2012pdf
Schneider B, Covey T, Coy S, Krylov E, Nazarov E (2010) Planar differential mobility spectrometer as a pre-filter for atmospheric pressure ionization mass spectrometry. Int J Mass Spectrom 298(1–3):45–54. doi:10.1016/j.ijms.2010.01.006
Schneider BB, Covey TR, Coy SL, Krylov EV, Nazarov EG (2010) Chemical effects in the separation process of a differential mobility/mass spectrometer system. Anal Chem 82(5):1867–1880. doi:10.1021/ac902571u
Schneider BB, Covey TR, Coy SL, Krylov EV, Nazarov EG (2010) Control of chemical effects in the separation process of a differential mobility mass spectrometer system. Eur J Mass Spectrom 16(1):57–71. doi:10.1255/ejms.1025
Schneider B, Nazarov E, Covey T (2012) Peak capacity in differential mobility spectrometry: effects of transport gas and gas modifiers. Int J Ion Mobil Spectrom 15(3):141–150. doi:10.1007/s12127-012-0098-9
Shvartsburg AA (2008) Differential ion mobility spectrometry: nonlinear ion transport and fundamentals of FAIMS. CRC Press, Taylor & Francis Group, Boca Raton
Shvartsburg A, Li F, Tang K, Smith R (2006) High-resolution field asymmetric waveform ion mobility spectrometry using new planar geometry analyzers. Anal Chem 78(11):3706–3714. doi:10.1021/ac052020v|10.1021/ac052020v
Sokol E, Edwards K, Qian K, Cooks R (2008) Rapid hydrocarbon analysis using a miniature rectilinear ion trap mass spectrometer. Analyst 133(8):1064–1071. doi:10.1039/b805813j
Sokol E, Noll RJ, Cooks RG, Beegle LW, Kim HI, Kanik I (2011) Miniature mass spectrometer equipped with electrospray and desorption electrospray ionization for direct analysis of organics from solids and solutions. Int J Mass Spectrom 306(2–3):187–195. doi:10.1016/j.ijms.2010.10.019
Tadjimukhamedov FK, Jackson AU, Nazarov EG, Ouyang Z, Cooks RG (2010) Evaluation of a differential mobility spectrometer/miniature mass spectrometer. J Am Soc Mass Spectrom 21(9):1477–1481. doi:10.1016/j.jasms.2010.06.001
Tsai CW, Yost RA, Garrett TJ (2012) High-field asymmetric waveform ion mobility spectrometry with solvent vapor addition: a potential greener bioanalytical technique. Bioanalysis 4(11):1363–1375. doi:10.4155/bio.12.110
Tyburski JB, Patterson AD, Krausz KW, Slavik J, Fornace AJ Jr, Gonzalez FJ, Idle JR (2008) Radiation metabolomics. 1. Identification of minimally invasive urine biomarkers for gamma-radiation exposure in mice. Radiat Res 170(1):1–14. doi:10.1667/RR1265.1
Xu W, Manicke NE, Cooks GR, Ouyang Z (2010) Miniaturization of mass spectrometry analysis systems. JALA 15(6):433–439. doi:10.1016/j.jala.2010.06.004
