Differential mobility spectrometer: optimization of the analytical characteristics
Tóm tắt
Differential mobility spectrometer is a powerful tool used for detection, filtration and characterization of ions in gas-phase. DMS instrumentation analytical performance is a matter of importance for practical application. This paper is devoted to the improving of the planar DMS analytical characteristics. The goal is to optimize ion transmission and separation efficiency for the best possible DMS performance, balanced between sensitivity and selectivity. Analytical characteristics of the DMS instrument depend on a number of interrelated parameters. Present paper focuses on the sensor geometry and transport gas flow rate and its influence on the DMS performance. To find optimal sensor design parameters a systematic approach to the DMS performance is provided and evaluated both theoretically and experimentally. To facilitate DMS optimization special criterion quantitatively describing DMS analytical quality is proposed. DMS instrumental parameters maximizing analytical quality are determined. Theoretical analysis is validated by comparison with experimental data. Practical recommendations following from these finding are presented.
Tài liệu tham khảo
Gorshkov MP (1982) S.U. Patent No. 966,583 G01N27/62
Buryakov IA, Krylov EV, Soldatov VP (1989) S.U. Patent No. 1485808, G01N27/62
Buryakov IA, Krylov EV, Soldatov VP (1988) S.U. Patent No.1 412447 G 01N 27/62
Buryakov IA, Krylov EV et al (1993) Int J Mass Spec Ion Process 128:143–148
Shvartsburg AA (2009) Differential ion mobility spectrometry: nonlinear ion transport and fundamentals of FAIMS. CRC, Boca Raton
Purves RW, Guevremont R et al (1998) Rev Sci Instrum 69:4094
Eiceman GA, Krylov E et al (2004) Anal Chem 76:4937
Krylova N, Krylov E et al (2003) J Phys Chem A 107:3648
Eiceman GA, Miller RA et al (2001) J Chromatogr A 917:205
Eiceman GA, Krylov EV et al (2004) The Analyst 129:297
Anderson AG, Markoski KA et al (2008) DMS-IMS2, GC-DMS, DMS-MS: DMS hybrid devices combining orthogonal principles of separation for challenging applications. Proc. SPIE. doi:10.1117/12.782429
Verenchikov AN, Krylov EV et al (1991) In: Malakhov VV (ed) Chemical analysis of environment. Nauka, Novosibirsk
Miller RA, Eiceman GA et al (2001) Int J Ion Mobil Spectrom 4(2):58–61
Nazarov EG, Anderson AG et al (2007) Int J Ion Mobil Spectrom 10
Krylov EV, Nazarov EG (2009) Electric field dependence of the ion mobility. Int J Mass Spectrom 285:149–156
Krylov EV, Coy SL et al (2010) Selection and generation of waveforms for differential mobility spectrometry. Rev Sci Instrum doi:10.1063/1.3284507
Schneider BB, Covey TR et al (2010) Control of chemical effects in the separation process of a differential mobility mass spectrometer system. Eur J Mass Spectrom 16:57–71. doi:10.1255/ejms.1025
Shvartsburg AA, Smith RD et al (2009) Ultrafast differential ion mobility spectrometry at extreme electric fields in multichannel microchips. Anal Chem 81:6489–6495
Shvartsburg AA, Smith RD (2011) Ultrahigh-resolution differential ion mobility spectrometry using extended separation times. Anal Chem 83:23–29
Krylov EV (2003) Comparison of the planar and coaxial field asymmetrical waveform ion mobility spectrometer (FAIMS). Int J Mass Spectrom 225(1):39–51
Krylov EV, Nazarov EG, Miller RA (2007) Differential mobility spectrometer: model of operation. Int J Mass Spectrom 226:76–85
Buryakov IA, Krylov EV, Soldatov VP (1991) In: Malakhov VV (Ed) Chemical analysis of environment. Nauka Novosibirsk
Schneider BB, Covey TR et al (2010) Planar differential mobility spectrometer as a pre-filter for atmospheric pressure ionization mass spectrometry. Int J Mass Spectrom 298(1):45–54. doi:10.1016/j.ijms.2010.01.006
Coy SL, Krylov EV et al (2010) Detection of radiation-exposure biomarkers by differential mobility prefiltered mass spectrometry (DMS-MS). Int J Mass Spectrom 291:108–117. doi:10.1016/j.ijms.2010.01.013