Differential miRNAs in acute spontaneous coronary artery dissection: Pathophysiological insights from a potential biomarker

EBioMedicine - Tập 66 - Trang 103338 - 2021
Marta Lozano-Prieto1, David Adlam2, Marcos García-Guimaraes3,4, Ancor Sanz-García5, Paula Vera-Tomé1, Fernando Rivero3, Javier Cuesta3, Teresa Bastante3, Anna A. Baranowska-Clarke2, Alicia Vara1, Enrique Martin-Gayo1,6, Miguel Vicente-Manzanares7, Pilar Martín8,9, Nilesh J Samani2, Francisco Sánchez-Madrid1,8,9, Fernando Alfonso3,9, Hortensia de la Fuente1,9
1Department of Immunology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
2Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
3Department of Cardiology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain
4Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
5Data Analysis Unit, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain
6Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
7Instituto de Biología Molecular y Celular del Cáncer USAL-CSIC, 37007, Salamanca, Spain
8Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares,
9CIBER de Enfermedades Cardiovasculares, Spain

Tài liệu tham khảo

Hayes, 2018, Spontaneous coronary artery dissection: current state of the science: a scientific statement from the american heart association., Circulation., 137, e523, 10.1161/CIR.0000000000000564 Gilhofer, 2019, Spontaneous coronary artery dissection: update 2019, Curr Opin Cardiol, 34, 594, 10.1097/HCO.0000000000000671 Adlam, 2018, European society of cardiology, acute cardiovascular care association, SCAD study group: a position paper on spontaneous coronary artery dissection, Eur Heart J, 39, 3353, 10.1093/eurheartj/ehy080 Hayes, 2020, Spontaneous coronary artery dissection: JACC state-of-the-art review, J Am Coll Cardiol, 76, 961, 10.1016/j.jacc.2020.05.084 Alfonso, 2012, Spontaneous coronary artery dissection: new insights from the tip of the iceberg?, Circulation, 126, 667, 10.1161/CIRCULATIONAHA.112.122093 Jackson, 2019, Spontaneous coronary artery dissection: pathophysiological insights from optical coherence tomography, JACC Cardiovasc Imaging, 12, 2475, 10.1016/j.jcmg.2019.01.015 Bartel, 2004, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell., 116, 281, 10.1016/S0092-8674(04)00045-5 Mittelbrunn, 2012, Intercellular communication: diverse structures for exchange of genetic information, Nat Rev Mol Cell Biol, 13, 328, 10.1038/nrm3335 Rupaimoole, 2017, MicroRNA therapeutics: towards a new era for the management of cancer and other diseases, Nat Rev Drug Discov, 16, 203, 10.1038/nrd.2016.246 Huang, 2017, MicroRNAs: biomarkers, diagnostics, and therapeutics, Methods Mol Biol., 1617, 57, 10.1007/978-1-4939-7046-9_4 Barwari, 2016, MicroRNAs in cardiovascular disease, J Am Coll Cardiol, 68, 2577, 10.1016/j.jacc.2016.09.945 Thygesen, 2018, Fourth universal definition of myocardial infarction (2018), J Am Coll Cardiol, 72, 2231, 10.1016/j.jacc.2018.08.1038 Collet, 2020, 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation, Eur Heart J, 10.1093/eurheartj/ehaa624 Ibanez, 2018, Eur Heart J, 39, 119, 10.1093/eurheartj/ehx393 D'Haene, 2012, miRNA expression profiling: from reference genes to global mean normalization, Methods Mol Biol, 822, 261, 10.1007/978-1-61779-427-8_18 Andersen, 2004, Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets, Cancer Res, 64, 5245, 10.1158/0008-5472.CAN-04-0496 Zhong, 2020, Circulating microRNA expression profiling and bioinformatics analysis of patients with coronary artery disease by RNA sequencing, J Clin Lab Anal, 34, e23020, 10.1002/jcla.23020 Li, 2015, Clinical impact of circulating miR-26a, miR-191, and miR-208b in plasma of patients with acute myocardial infarction, Eur J Med Res, 20, 58, 10.1186/s40001-015-0148-y Fichtlscherer, 2010, Circulating microRNAs in patients with coronary artery disease, Circ Res, 107, 677, 10.1161/CIRCRESAHA.109.215566 Jakob, 2017, Profiling and validation of circulating microRNAs for cardiovascular events in patients presenting with ST-segment elevation myocardial infarction, Eur Heart J, 38, 511 Chang, 2017, Dysregulation of endothelial colony-forming cell function by a negative feedback loop of circulating miR-146a and -146b in cardiovascular disease patients, PLoS One, 12, 10.1371/journal.pone.0181562 Huang, 2017, Computational tools for allosteric drug discovery: site identification and focus library design, Methods Mol Biol, 1529, 439, 10.1007/978-1-4939-6637-0_23 Xue, 2019, Upregulation of miR-146a-5p is associated with increased proliferation and migration of vascular smooth muscle cells in aortic dissection, J Clin Lab Anal, 33, e22843, 10.1002/jcla.22843 Olin, 2020, A plasma proteogenomic signature for fibromuscular dysplasia, Cardiovasc Res, 116, 63, 10.1093/cvr/cvz219 Peters, 2020, Small things matter: relevance of microRNAs in cardiovascular disease, Front Physiol, 11, 793, 10.3389/fphys.2020.00793 Thomas, 2017, Novel risk markers and risk assessments for cardiovascular disease, Circ Res, 120, 133, 10.1161/CIRCRESAHA.116.309955 Viereck, 2017, Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury, Circ Res, 120, 381, 10.1161/CIRCRESAHA.116.308434 Adlam, 2019, Association of the PHACTR1/EDN1 genetic locus with spontaneous coronary artery dissection, J Am Coll Cardiol, 73, 58, 10.1016/j.jacc.2018.09.085 Loeys, 2005, A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2, Nat Genet, 37, 275, 10.1038/ng1511 Bertoli-Avella, 2015, Mutations in a TGF-beta ligand, TGFB3, cause syndromic aortic aneurysms and dissections, J Am Coll Cardiol, 65, 1324, 10.1016/j.jacc.2015.01.040 Verstraeten, 2020, Enrichment of rare variants in Loeys-Dietz syndrome genes in spontaneous coronary artery dissection but not in severe fibromuscular dysplasia, Circulation, 142, 1021, 10.1161/CIRCULATIONAHA.120.045946 Compton, 2007, Coronary vessel development is dependent on the type III transforming growth factor beta receptor, Circ Res, 101, 784, 10.1161/CIRCRESAHA.107.152082 Sun, 2017, Transforming growth factor-beta Receptor III is a potential regulator of ischemia-induced cardiomyocyte apoptosis, J Am Heart Assoc, 6, 10.1161/JAHA.116.005357 Isselbacher, 2016, Hereditary influence in thoracic aortic aneurysm and dissection, Circulation, 133, 2516, 10.1161/CIRCULATIONAHA.116.009762 Biernacka, 2011, TGF-beta signaling in fibrosis, Growth Factors, 29, 196, 10.3109/08977194.2011.595714 Garcia-Guimaraes, 2020, Spontaneous coronary artery dissection: mechanisms, diagnosis and management, Eur Cardiol, 15, 1, 10.15420/ecr.2019.01 Whisnant, 2013, In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms, mBio, 4, 10.1128/mBio.00193-13 Barton, 2019, Endothelin: 30 years from discovery to therapy, Hypertension, 74, 1232, 10.1161/HYPERTENSIONAHA.119.12105 Saw, 2020, Chromosome 1q21.2 and additional loci influence risk of spontaneous coronary artery dissection and myocardial infarction, Nat Commun, 11, 4432, 10.1038/s41467-020-17558-x Wang, 2010, Mutations in myosin light chain kinase cause familial aortic dissections, Am J Hum Genet, 87, 701, 10.1016/j.ajhg.2010.10.006 Carss, 2020, Spontaneous coronary artery dissection: insights on rare genetic variation from genome sequencing, Circ Genom Precis Med, 13, 10.1161/CIRCGEN.120.003030