Biến đổi chuyển hóa phân hóa trong sự phát triển của phôi đậu nành ứng phó với điều kiện dinh dưỡng và axit abscisic

Plant Molecular Biology - Tập 113 - Trang 89-103 - 2023
Tatiana Pavlovic1, Ezequiel Margarit1, Gabriela Leticia Müller1, Ezequiel Saenz2, Andrés Iván Ruzzo1, María Fabiana Drincovich1, Lucas Borrás2, Mariana Saigo1, Mariel Claudia Gerrard Wheeler1
1Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
2Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina

Tóm tắt

Việc lắng đọng hợp chất lưu trữ hạt bị ảnh hưởng bởi cả mô mẹ và mô con. Trong khuôn khổ này, chúng tôi đã phân tích các chiến lược hoạt động trong suốt quá trình phát triển và làm đầy phôi đậu nành, sử dụng hệ thống nuôi cấy in vitro kết hợp với các phương pháp chuyển hóa và proteomics. Tỷ lệ carbon:nitrogen (C:N) của nguồn cấp mẹ và hormone axit abscisic (ABA) là các tín hiệu cụ thể và tương tác thúc đẩy các tái lập trình chuyển hóa khác nhau liên quan đến những thay đổi trong sự tích lũy của các đại phân tử lưu trữ như protein hoặc dầu. Những khác biệt về sự phong phú của đường, axit amin, enzyme, một số chất vận chuyển, yếu tố phiên mã và protein liên quan đến tín hiệu đã được phát hiện. Phôi thích nghi với trạng thái dinh dưỡng bằng cách tăng cường chuyển hóa cả carbon và nitrogen trong điều kiện tỷ lệ C:N thấp hoặc chỉ carbon trong điều kiện tỷ lệ C:N cao. ABA đã tắt nhiều con đường, đặc biệt là trong điều kiện có sẵn nhiều axit amin, ưu tiên cho tổng hợp hợp chất lưu trữ. Các phản ứng chung do ABA kích thích bao gồm tăng cường hấp thụ sucrose (để tăng cường sức hút) và tích lũy oleosin (thành phần cấu trúc của thể dầu). Theo đó, ABA đã khác biệt thúc đẩy phân hủy protein dưới điều kiện cung cấp nitrogen thấp để duy trì nhu cầu chuyển hóa. Hơn nữa, hoạt động của một shuttle citrat đã được đề xuất bởi việc định lượng phiên mã và đo lường hoạt động enzym. Những kết quả thu được hữu ích để giúp định nghĩa các công cụ công nghệ sinh học và các phương pháp công nghệ nhằm cải thiện năng suất dầu và protein, có ảnh hưởng trực tiếp đến dinh dưỡng của con người và động vật cũng như trong hóa học xanh. Tỷ lệ carbon:nitrogen của nguồn cấp mẹ và axit abscisic kiểm soát sự thay đổi trong các protein điều hòa, các chất vận chuyển và enzyme; tái lập trình các con đường chuyển hóa và ảnh hưởng đến quá trình tổng hợp các hợp chất lưu trữ trong suốt quá trình trưởng thành của phôi đậu nành.

Từ khóa

#phôi đậu nành #axit abscisic #chuyển hóa #hợp chất lưu trữ #dinh dưỡng

Tài liệu tham khảo

Ahn CS, Ahn HK, Pai HS (2015) Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway. J Exp Bot 66:827–840. https://doi.org/10.1093/jxb/eru438 Ali F, Qanmber G, Li F, Wang Z (2022) Updated role of ABA in seed maturation, dormancy, and germination. J Adv Res 35:199–214. https://doi.org/10.1016/j.jare.2021.03.011 Allen DK, Young JD (2013) Carbon and nitrogen provisions alter the metabolic flux in developing soybean embryos. Plant Physiol 161:1458–1475. https://doi.org/10.1104/pp.112.203299 Allen DK, Ohlrogge JB, Shachar-Hill Y (2009) The role of light in soybean seed filling metabolism. Plant J 58:220–234. https://doi.org/10.1111/j.1365-313X.2008.03771.x Amir R, Galili G, Cohen H (2018) The metabolic roles of free amino acids during seed development. Plant Sci 275:11–18. https://doi.org/10.1016/j.plantsci.2018.06.011 Angelovici R, Galili G, Fernie AR, Fait A (2010) Seed desiccation: a bridge between maturation and germination. Trends Plant Sci 15:211–218. https://doi.org/10.1016/j.tplants.2010.01.003 Arias CL, Pavlovic T, Torcolese G, Badia MB, Gismondi M, Maurino VG, Andreo CS, Drincovich MF, Gerrard Wheeler MC, Saigo M (2018) NADP-dependent malic enzyme 1 participates in the abscisic acid response in Arabidopsis thaliana. Front Plant Sci 9:1637. https://doi.org/10.3389/fpls.2018.01637 Arias CL, Quach T, Huynh T, Nguyen H, Moretti A, Shi Y, Guo M, Rasoul A, Van K, McHale L, Clemente TE, Alonso AP, Zhang C (2022) Expression of AtWRI1 and AtDGAT1 during soybean embryo development influences oil and carbohydrate metabolism. Plant Biotechnol J 20:1327–1345. https://doi.org/10.1111/pbi.13810 Badia MB, Arias CL, Tronconi MA, Maurino VG, Andreo CS, Drincovich MF, Gerrard Wheeler MC (2015) Enhanced cytosolic NADP-ME2 activity in A. thaliana affects plant development, stress tolerance and specific diurnal and nocturnal cellular processes. Plant Sci 240:193–203. https://doi.org/10.1016/j.plantsci.2015.09.015 Badia MB, Maurino VG, Pavlovic T, Arias CL, Pagani MA, Andreo CS, Saigo M, Drincovich MF, Gerrard Wheeler MC (2020) Loss of function of Arabidopsis NADP-malic enzyme 1 results in enhanced tolerance to aluminum stress. Plant J 101:653–665. https://doi.org/10.1111/tpj.14571 Bakshi A, Moin M, Madhav MS, Kirti PB (2019) Target of rapamycin, a master regulator of multiple signalling pathways and a potential candidate gene for crop improvement. Plant Biol 21:190–205. https://doi.org/10.1111/plb.12935 Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49:235–249. https://doi.org/10.1016/j.plipres.2010.01.001 Belda-Palazón B, Adamo M, Valerio C, Ferreira LJ, Confraria A, Reis-Barata D, Rodrigues A, Meyer C, Rodriguez PL, Baena-González E (2020) A dual function of SnRK2 kinases in the regulation of SnRK1 and plant growth. Nat Plants 6:1345–1353. https://doi.org/10.1038/s41477-020-00778-w Bheri M, Mahiwal S, Sanyal SK, Pandey GK (2021) Plant protein phosphatases: what do we know about their mechanism of action? FEBS J 288:756–785. https://doi.org/10.1111/febs.15454 Bosaz LB, Gerde JA, Borrás L, Cipriotti PA, Ascheri L, Campos M, Gallo S, Rotundo JL (2019) Management and environmental factors explaining soybean seed protein variability in central Argentina. Field Crop Res 240:34–43. https://doi.org/10.1016/j.fcr.2019.05.007 Caldana C, Li Y, Leisse A, Zhang Y, Bartholomaeus L, Fernie AR, Willmitzer L, Giavalisco P (2013) Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana. Plant J 73:897–909. https://doi.org/10.1111/tpj.12080 Camoni L, Visconti S, Aducci P, Marra M (2018) 14-3-3 proteins in plant hormone signaling: doing several things at once. Front Plant Sci 9:297. https://doi.org/10.3389/fpls.2018.00297 Chakraborty S, Nguyen B, Wasti SD, Xu G (2019) Plant leucine-rich repeat receptor kinase (LRR-RK): structure, ligand perception, and activation mechanism. Molecules 24:3081. https://doi.org/10.3390/molecules24173081 Chan A, Carianopol C, Tsai AY, Varatharajah K, Chiu RS, Gazzarrini S (2017) SnRK1 phosphorylation of FUSCA3 positively regulates embryogenesis, seed yield, and plant growth at high temperature in Arabidopsis. J Exp Bot 68:4219–4231. https://doi.org/10.1093/jxb/erx233 Chen Y, Zhou X, Chang S, Chu Z, Wang H, Han S, Wang Y (2017) Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice. Biochem Biophys Res Commun 493:1450–1456. https://doi.org/10.1016/j.bbrc.2017.09.166 Cocuron JC, Koubaa M, Kimmelfield R, Ross Z, Alonso AP (2019) A combined metabolomics and fluxomics analysis identifies steps limiting oil synthesis in maize embryos. Plant Physiol 181:961–975. https://doi.org/10.1104/pp.19.00920 Collakova E, Aghamirzaie D, Fang Y, Klumas C, Tabataba F, Kakumanu A, Myers E, Heath LS, Grene R (2013) Metabolic and transcriptional reprogramming in developing soybean (Glycine max) embryos. Metabolites 3:347–372. https://doi.org/10.3390/metabo3020347 Dyer JM, Stymne S, Green AG, Carlsson AS (2008) High-value oils from plants. Plant J 54:640–655. https://doi.org/10.1111/j.1365-313X.2008.03430.x Eisenberg AJ, Mascarenhas JP (1985) Abscisic acid and the regulation of synthesis of specific seed proteins and their messenger RNAs during culture of soybean embryos. Planta 166:505–514. https://doi.org/10.1007/BF00391275 Fang X, Han H, Stamatoyannopoulos G, Li Q (2004) Developmentally specific role of the CCAAT box in regulation of human gamma-globin gene expression. J Biol Chem 279:5444–5449. https://doi.org/10.1074/jbc.M306241200 Fehr WR, Caviness CF, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci 11:929–931. https://doi.org/10.2135/cropsci1971.0011183X001100060051x Gerrard Wheeler MC, Arias CL, Righini S, Badia MB, Andreo CS, Drincovich MF, Saigo M (2016) Differential contribution of malic enzymes during soybean and castor seeds maturation. PLoS ONE 11:e0158040. https://doi.org/10.1371/journal.pone.0158040 Heinemann B, Hildebrandt TM (2021) The role of amino acid metabolism in signaling and metabolic adaptation to stress-induced energy deficiency in plants. J Exp Bot 72:4634–4645. https://doi.org/10.1093/jxb/erab182 Herman EM (2014) Soybean seed proteome rebalancing. Front Plant Sci 5:437. https://doi.org/10.3389/fpls.2014.00437 Howe KL, Contreras-Moreira B, De Silva N, Maslen G, Akanni W, Allen J, Alvarez-Jarreta J, Barba M, Bolser DM, Cambell L, Carbajo M, Chakiachvili M, Christensen M, Cummins C, Cuzick A, Davis P, Fexova S, Gall A, George N, Gil L, Gupta P, Hammond-Kosack KE, Haskell E, Hunt SE, Jaiswal P, Janacek SH, Kersey PJ, Langridge N, Maheswari U, Maurel T, McDowall MD, Moore B, Muffato M, Naamati G, Naithani S, Olson A, Papatheodorou I, Patricio M, Paulini M, Pedro H, Perry E, Preece J, Rosello M, Russell M, Sitnik V, Staines DM, Stein J, Tello-Ruiz MK, Trevanion SJ, Urban M, Wei S, Ware D, Williams G, Yates AD, Flicek P (2020) Ensembl genomes 2020-enabling non-vertebrate genomic research. Nucleic Acids Res 48:D689–D695. https://doi.org/10.1093/nar/gkz890 Hsu FC, Obendorf RL (1982) Compositional analysis of in vitro matured soybean seeds. Plant Sci Lett 27:129–135. https://doi.org/10.1016/0304-4211(82)90141-9 Hutchins AP, Roberts GR, Lloyd CW, Doonan JH (2004) In vivo interaction between CDKA and eIF4A: a possible mechanism linking translation and cell proliferation. FEBS Lett 556:91–94. https://doi.org/10.1016/s0014-5793(03)01382-6 Igamberdiev AU, Eprintsev AT (2016) Organic acids: the pools of fixed carbon involved in redox regulation and energy balance in higher plants. Front Plant Sci 7:1042. https://doi.org/10.3389/fpls.2016.01042 Jullien PE, Mosquna A, Ingouff M, Sakata T, Ohad N, Berger F (2008) Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis. PLoS Biol 6:e194. https://doi.org/10.1371/journal.pbio.0060194 Kambhampati S, Aznar-Moreno JA, Hostetler C, Caso T, Bailey SR, Hubbard AH, Durrett TP, Allen DK (2020) On the inverse correlation of protein and oil: examining the effects of altered central carbon metabolism on seed composition using soybean fast neutron mutants. Metabolites 10:18. https://doi.org/10.3390/metabo10010018 Kato M, Yano K, Morotomi-Yano K, Saito H, Miki Y (2002) Identification and characterization of the human protein kinase-like gene NTKL: mitosis-specific centrosomal localization of an alternatively spliced isoform. Genomics 79:760–767. https://doi.org/10.1006/geno.2002.6774 Khan A, Mathelier A (2017) Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinform 18:287. https://doi.org/10.1186/s12859-017-1708-7 Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0 Lee DH, Park SJ, Ahn CS, Pai HS (2017) MRF family genes are involved in translation control, especially under energy-deficient conditions, and their expression and functions are modulated by the TOR signaling pathway. Plant Cell 29:2895–2920. https://doi.org/10.1105/tpc.17.00563 Leonardi GA, Carlos NA, Mazzafera P, Balbuena TS (2015) Eucalyptus urograndis stem proteome is responsive to short-term cold stress. Genet Mol Biol 38:191–198. https://doi.org/10.1590/S1415-475738220140235 Li Q, Fan CM, Zhang XM, Fu YF (2012) Validation of reference genes for real-time quantitative PCR normalization in soybean developmental and germinating seeds. Plant Cell Rep 10:1789–1798. https://doi.org/10.1007/s00299-012-1282-4 Martin-Arevalillo R, Nanao MH, Larrieu A, Vinos-Poyo T, Mast D, Galvan-Ampudia C, Brunoud G, Vernoux T, Dumas R, Parcy F (2017) Structure of the Arabidopsis TOPLESS corepressor provides insight into the evolution of transcriptional repression. Proc Natl Acad Sci USA 114:8107–8112. https://doi.org/10.1073/pnas.1703054114 Mergner J, Frejno M, List M, Papacek M, Chen X, Chaudhary A, Samaras P, Richter S, Shikata H, Messerer M, Lang D, Altmann S, Cyprys P, Zolg DP, Mathieson T, Bantscheff M, Hazarika RR, Schmidt T, Dawid C, Dunkel A, Hofmann T, Sprunck S, Falter-Braun P, Johannes F, Mayer KFX, Jürgens G, Wilhelm M, Baumbach J, Grill E, Schneitz K, Schwechheimer C, Kuster B (2020) Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 579:409–414. https://doi.org/10.1038/s41586-020-2094-2 Min CW, Park J, Bae JW, Agrawal GK, Rakwal R, Kim Y, Yang P, Kim ST, Gupta R (2020) In-depth investigation of low-abundance proteins in matured and filling stages seeds of Glycine max employing a combination of protamine sulfate precipitation and TMT-based quantitative proteomic analysis. Cells 9:1517. https://doi.org/10.3390/cells9061517 Nguyen QT, Kisiala A, Andreas P, Neil Emery RJ, Narine S (2016) Soybean seed development: fatty acid and phytohormone metabolism and their interactions. Curr Genomics 17:241–260. https://doi.org/10.2174/1389202917666160202220238 Nielsen NC, Dickinson CD, Cho TJ, Thanh VH, Scallon BJ, Fischer RL, Sims TL, Drews GN, Goldberg RB (1989) Characterization of the glycinin gene family in soybean. Plant Cell 1:313–328. https://doi.org/10.1105/tpc.1.3.313 Ormancey M, Thuleau P, Mazars C, Cotelle V (2017) CDPKs and 14-3-3 proteins: emerging duo in signaling. Trends Plant Sci 22:263–272. https://doi.org/10.1016/j.tplants.2016.11.007 Pandurangan S, Pajak A, Molnar SJ, Cober ER, Dhaubhadel S, Hernández-Sebastià C, Kaiser WM, Nelson RL, Huber SC, Marsolais F (2012) Relationship between asparagine metabolism and protein concentration in soybean seed. J Exp Bot 63:3173–3184. https://doi.org/10.1093/jxb/ers039 Pirovani CP, Macêdo JN, Contim LA, Matrangolo FS, Loureiro ME, Fontes EP (2002) A sucrose-binding protein homologue from soybean exhibits GTP-binding activity that functions independently of sucrose transport activity. Eur J Biochem 269:3998–4008. https://doi.org/10.1046/j.1432-1033.2002.03089.x Pyc M, Cai Y, Gidda SK, Yurchenko O, Park S, Kretzschmar FK, Ischebeck T, Valerius O, Braus GH, Chapman KD, Dyer JM, Mullen RT (2017) Arabidopsis lipid droplet-associated protein (LDAP)—interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds. Plant J 92:1182–1201. https://doi.org/10.1111/tpj.13754 Radchuk R, Radchuk V, Götz KP, Weichert H, Richter A, Emery RJ, Weschke W, Weber H (2007) Ectopic expression of phosphoenolpyruvate carboxylase in Vicia narbonensis seeds: effects of improved nutrient status on seed maturation and transcriptional regulatory networks. Plant J 51:819–839. https://doi.org/10.1111/j.1365-313X.2007.03196.x Rodriguez M, Parola R, Andreola S, Pereyra C, Martínez-Noël G (2019) TOR and SnRK1 signaling pathways in plant response to abiotic stresses: Do they always act according to the “yin-yang” model? Plant Sci 288:110220. https://doi.org/10.1016/j.plantsci.2019.110220 Rolletschek H, Borisjuk L, Radchuk R, Miranda M, Heim U, Wobus U, Weber H (2004) Seed-specific expression of a bacterial phosphoenolpyruvate carboxylase in Vicia narbonensis increases protein content and improves carbon economy. Plant Biotechnol J 2:211–219. https://doi.org/10.1111/j.1467-7652.2004.00064.x Rosnoblet C, Aubry C, Leprince O, Vu BL, Rogniaux H, Buitink J (2007) The regulatory gamma subunit SNF4b of the sucrose non-fermenting-related kinase complex is involved in longevity and stachyose accumulation during maturation of Medicago truncatula seeds. Plant J 51:47–59. https://doi.org/10.1111/j.1365-313X.2007.03116.x Salem MA, Li Y, Wiszniewski A, Giavalisco P (2017) Regulatory-associated protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and germination potential. Plant J 92:525–545. https://doi.org/10.1111/tpj.13667 Schwacke R, Ponce-Soto GY, Krause K, Bolger AM, Arsova B, Hallab A, Gruden K, Stitt M, Bolger ME, Usadel B (2019) MapMan4: a refined protein classification and annotation framework applicable to multi-omics data analysis. Mol Plant 12:879–892. https://doi.org/10.1016/j.molp.2019.01.003 Shi L, Wu Y, Sheen J (2018) TOR signaling in plants: conservation and innovation. Development 145:dev160887. https://doi.org/10.1242/dev.160887 Shin R, Alvarez S, Burch AY, Jez JM, Schachtman DP (2007) Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proc Natl Acad Sci USA 104:6460–6465. https://doi.org/10.1073/pnas.0610208104 Simeunovic A, Mair A, Wurzinger B, Teige M (2016) Know where your clients are: subcellular localization and targets of calcium-dependent protein kinases. J Exp Bot 67:3855–3872. https://doi.org/10.1093/jxb/erw157 Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6:196–203. https://doi.org/10.4161/psb.6.2.14701 Solaki M, Ewald JC (2018) Fueling the cycle: CDKs in carbon and energy metabolism. Front Cell Dev Biol 6:93. https://doi.org/10.3389/fcell.2018.00093 Sweetlove LJ, Beard KFM, Nunes-Nesi A, Fernie AR, Ratcliffe RG (2010) Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci 15:462–470. https://doi.org/10.1016/j.tplants.2010.05.006 Thorne JH (1981) Morphology and ultrastructure of maternal seed tissues of soybean in relation to the import of photosynthate. Plant Physiol 67:1016–1025. https://doi.org/10.1104/pp.67.5.1016 Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z (2017) agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45:W122–W129. https://doi.org/10.1093/nar/gkx382 To A, Valon C, Savino G, Guilleminot J, Devic M, Giraudat J, Parcy F (2006) A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell 18:1642–1651. https://doi.org/10.1105/tpc.105.039925 Tokel D, Erkencioglu BN (2021) Production and trade of oil crops, and their contribution to the world economy. In: Tombuloglu H, Unver T, Tombuloglu G, Hakeem KR (eds) Oil crop genomics. Springer, Switzerland, pp 415–427. https://doi.org/10.1007/978-3-030-70420-9 Tsogtbaatar E, Cocuron JC, Alonso AP (2020) Non-conventional pathways enable pennycress (Thlaspi arvense L.) embryos to achieve high efficiency of oil biosynthesis. J Exp Bot 71:3037–3051. https://doi.org/10.1093/jxb/eraa060 Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740. https://doi.org/10.1038/nmeth.3901 Vitantonio-Mazzini LN, Gómez D, Gambin BL, Di Mauro G, Iglesias R, Costanzi G, Jobbágy EG, Borrás L (2021) Sowing date, genotype choice, and water environment control soybean yields in central Argentina. Crop Sci 61:715–728. https://doi.org/10.1002/csc2.20315 Waadt R, Manalansan B, Rauniyar N, Munemasa S, Booker MA, Brandt B, Waadt C, Nusinow DA, Kay SA, Kunz HH, Schumacher K, DeLong A, Yates JR 3rd, Schroeder JI (2015) Identification of open stomata1-interacting proteins reveals interactions with sucrose non-fermenting1-related protein kinases2 and with type 2A protein phosphatases that function in abscisic acid responses. Plant Physiol 169:760–779. https://doi.org/10.1104/pp.15.00575 Wang HW, Zhang B, Hao YJ, Huang J, Tian AG, Liao Y, Zhang YS, Chen SY (2007) The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J 52:716–729. https://doi.org/10.1111/j.1365-313X.2007.03268.x Wang P, Zhao Y, Li Z, Hsu CC, Liu X, Fu L, Hou YJ, Du Y, Xie S, Zhang C, Gao J, Cao M, Huang X, Zhu Y, Tang K, Wang X, Tao WA, Xiong Y, Zhu JK (2018) Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol Cell 69:100–112. https://doi.org/10.1016/j.molcel.2017.12.002 Weber H, Borosjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279. https://doi.org/10.1146/annurev.arplant.56.032604.144201 Xiong Y, Sheen J (2015) Novel links in the plant TOR kinase signaling network. Curr Opin Plant Biol 28:83–91. https://doi.org/10.1016/j.pbi.2015.09.006 Yamamoto N, Masumura T, Yano K, Sugimoto T (2019) Pattern analysis suggests that phosphoenolpyruvate carboxylase in maturing soybean seeds promotes the accumulation of protein. Biosci Biotechnol Biochem 83:2238–2243. https://doi.org/10.1080/09168451.2019.1648205 Yuan W, Zhou J, Tong J, Zhuo W, Wang L, Li Y, Sun Q, Qian W (2019) ALBA protein complex reads genic R-loops to maintain genome stability in Arabidopsis. Sci Adv 5:eaav9040. https://doi.org/10.1126/sciadv.aav9040