Differential ionosphere modelling for single-reference long-baseline GPS kinematic positioning

Earth, Planets and Space - Tập 62 - Trang 915-922 - 2011
H. Dekkiche1, S. Kahlouche1, H. Abbas1
1Geodesy Division, Space Techniques Center, Algerian Space Agency, Algiers, Algeria

Tóm tắt

The ionospheric effect is considered to be one of the most important error sources limiting the quality of GPS kinematic positioning. Over longer distances, differential ionospheric residuals become larger and may affect the ambiguity resolution process. We present here a Kalman-filter-based GPS ionosphere model for long-baseline kinematic applications. This observational model includes the differential ionosphere as an additional unknown factor with position coordinates and ambiguities, while the temporal correlations of the state vector are specified in the dynamic model. The temporal behaviour of ionospheric residuals is determined by the analysis of their autocorrelation function. This newly developed method was applied on a set of data collected by a roving receiver located offshore of Oran (Algeria). The results show that for baselines of about 80 km, the root mean square is at the level of a few centimetres. For tests of baselines of about 51 km, the comparison between short- and longbaseline solutions revealed that mean differences of a few millimetres and 2 cm are obtained for the horizontal coordinates and vertical component, respectively, and the standard deviation (σ) of differences on the scale of a few centimetres.

Tài liệu tham khảo

Cannon, M. E., G. Lachapelle, P. Alves, L. P. Fortes, and B. Townsend, GPS RTK Positioning using a regional reference network: theory and results, Proceedings of the 5th GNSS international symposium, Seville, (CD-ROM) 8–11 May 2001, 2001. Chao, C. C., The tropospheric calibration model for Mariner Mars 1971, Technical Report 32-1587, Jet Propulsion Laboratory, Pasadena, CA, USA, 1974. Chen, H. Y., C. Rizos, and S. Han, An instantaneous ambiguity resolution procedure suitable for medium scale GPS reference station network, Surv. Rev., 37(291), 39610, 2004. Coco, D., GPS: Satellites of opportunity for ionosphere monitoring, GPS World, 2(9), 47–50, 1991. Essen, L. and K. D. Froome, The refractive indices and dielectric constants of air and its principal constituents at 24 000 Mc/s, Proc. Phys. Soc., 64(B), 325–356, 1951. Goad, C. C. and L. Goodman, A modified Hopfield tropospheric refraction correction model, AGU Fall Annual Meeting, San Francisco, CA, USA, 1974. Han, S. W., Carrier phase-based long-range GPS kinematic positioning, PhD dissertation, rep UNISURV S-49, School of Geomatic Engineering, The University of New South Wales, Sydney, 1997. Hernandez-Pajares, M., J. M. Juan, and J. Sanz, Application of ionospheric tomography to real-time GPS carrier-phase ambiguities resolution, at scales of 400–1000 km and with high geomagnetic activity, Geophys. Res. Lett,, 27(13), 2009–2012, 2000. Ho, C., Precision orbit determination of Global Positioning System satellites, Report CSR-90-2, Center for Space Research, University of Texas, Austin, TX, USA, 1990. Hopfield, H. S., Two-quartic tropospheric refractivity profile for correcting satellite data, J. Geophys, Res., 74(18), 4487499, 1969. Hu, G. R., H. S. Khoo, P. C. Goh, and C. L. Law, Development and assessment of GPS virtual reference stations for RTK positioning, J. Geod., 77, 292–302, 2003. Kashani, I., P. Wielgosz, and D. A. Grejner-Brzezinska, The impact of the ionospheric correction latency on long-baseline instantaneous kinematic GPS positioning, Surv. Rev., 2005. Kim, D. and R. B. Langley, Ionosphere-nullification technique for longbaseline real-time kinematic applications, Navigation. J. Inst. Navigation, 54(3), 227–240, 2007. Klobuchar, J. A., Ionospheric effect on GPS, GPS World, 2(4), 48–51, 1991. Lachapelle, G., P. Alves, L. P. Fortes, M. E. Cannon, and B. Townsend, DGPS RTK positioning using a reference network, Proc 13th Int Tech Meeting Satellite Division US Inst Navigation, Salt Lake City, UT, 1922 September, pp 1165–1171, 2000. Leick, A., GPS Satellite Surveying, second edition, John Wiley, New York, 1995. Odijk, D., Weighting ionospheric corrections to improve fast GPS positioning over medium distances, Proceedings of the ION GPS 2000, Salt Lake City, UT, 19–22, pp 1113–1123, 2000. Odijk, D., H. van der Marel, and I. Song, Precise GPS positioning by applying ionospheric corrections from an active control network, GPS Solut., 3,49–57, 2000. Qin, X., S. Gourevitch, and M. Kuhl, Very precise differential GPS development status and test results, Proceedings of ION GPS-92,Albu-querque, New Mexico, 1992. Raquet, J., Development of a method for kinematic GPS carrier phase ambiguity resolution using multiple reference receivers, UCGE rep 20116, University of Calgary, Canada, 1998. Rizos, C., Network RTK research and implementation: a geodetic perspective, J, GPS, 2(1), 144–150, 2002. Rothacher, M., Orbits of satellite systems in space geodesy, Ph.D. Dissertation, Astronomical Institute, University of Berne, Berne, Switzerland, 1992. Saastamoinen, J., Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites, in The Use of Artificial Satellites for Geodesy, Geophysical Monograph No. 15, AGU, Washington, D.C., USA, 1972. Solheim, F. S., Use of pointed water vapor radiometer observations to improve vertical GPS surveying accuracy, Ph.D. Dissertation, Department of Physics, University of Colorado, Boulder, CO, USA, 1993. Vollath, U., A. Buecherl, H. Landau, C. Pagels, and B. Wagner, Multibase RTK positioning using virtual reference stations, Proceedings of the ION GPS, Salt Lake City, UT, 19–22, pp 123–131, 2000. Wanninger, L., The performance of virtual reference stations in active geodetic GPS-networks under solar maximum conditions, Proceedings of the ION GPS’99, Nashville, TN, pp 1419–1427, 1999. Wielgosz, P., D. A. Grejner-Brzezinska, and I. Kashani, Network approach to precise medium range GPS navigation, Navigation, 51(3), 213–220, 2004. Wielgosz, P., I. Kashani, and D. Grejner-Brzezinska, Analysis of longrange network RTK during a severe ionospheric storm, J. Geod., 79, 524–531,2005. Wübbena, G., A. Bagge, G. Seeber, V. Böder, and P. Hankemeier, Reducing distance dependent errors for real-time precise DGPS applications by establishing reference station network, Proc 9th Int Tech Meeting Satellite Division US Inst. Navigation, Kansas City, MO, 17–20, pp 1845–1852, 1996. Yang, M. and C.-F. Lo, Real-time kinematic GPS positioning for centimeter level ocean surface monitoring, Proc. Natl. Sci, Counc. ROC(A), 24(1), 79–85, 2000. Zhang, J., Investigations into the estimation of residual tropospheric delays in a GPS network, Master Thesis, UCGE Report 20132, Geomatics Engineering, The University of Calgary, 1999.