Differential expression of microRNAs and tRNA fragments mediate the adaptation of the liver fluke Fasciola gigantica to its intermediate snail and definitive mammalian hosts
Tài liệu tham khảo
Aebi, 1990, Isolation of a temperature-sensitive mutant with an altered tRNA nucleotidyltransferase and cloning of the gene encoding tRNA nucleotidyltransferase in the yeast Saccharomyces cerevisiae, J. Biol. Chem., 265, 16216, 10.1016/S0021-9258(17)46210-7
Andrews, 1999, The life cycle of Fasciola hepatica, 1
Baek, 2008, The impact of microRNAs on protein output, Nature, 455, 64, 10.1038/nature07242
Bai, 2014, Genome-wide sequencing of small RNAs reveals a tissue-specific loss of conserved microRNA families in Echinococcus granulosus, BMC Genomics, 15, 736, 10.1186/1471-2164-15-736
Bartel, 2018, Metazoan microRNAs, Cell, 173, 20, 10.1016/j.cell.2018.03.006
Basika, 2016, Identification and profiling of microRNAs in two developmental stages of the model cestode parasite Mesocestoides corti, Mol. Biochem. Parasitol., 210, 37, 10.1016/j.molbiopara.2016.08.004
Betel, 2010, Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites, Genome Biol., 11, R90, 10.1186/gb-2010-11-8-r90
Cai, 2016, MicroRNAs in parasitic helminthiases: current status and future perspectives, Trends Parasitol., 32, 71, 10.1016/j.pt.2015.09.003
Chan, 2019, tRNAscan-SE: searching for tRNA genes in genomic sequences, Methods Mol. Biol., 1962, 1, 10.1007/978-1-4939-9173-0_1
Conesa, 2005, Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research, Bioinformatics, 21, 3674, 10.1093/bioinformatics/bti610
Cristodero, 2017, The multifaceted regulatory potential of tRNA-derived fragments, Non-coding RNA Invest., 1, 7, 10.21037/ncri.2017.08.07
Cwiklinski, 2016, A prospective view of animal and human Fasciolosis, Parasite Immunol., 38, 558, 10.1111/pim.12343
Drurey, 2020, Extracellular vesicles: new targets for vaccines against helminth parasites, Int. J. Parasitol., 50, 623, 10.1016/j.ijpara.2020.04.011
Fontenla, 2015, The miRnome of Fasciola hepatica juveniles endorses the existence of a reduced set of highly divergent microRNAs in parasitic flatworms, Int. J. Parasitol., 45, 901, 10.1016/j.ijpara.2015.06.007
Fricker, 2019, A tRNA half modulates translation as stress response in Trypanosoma brucei, Nature Commun., 10, 118, 10.1038/s41467-018-07949-6
Friedlander, 2012, miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades, Nucleic. Acids Res., 40, 37, 10.1093/nar/gkr688
Fromm, 2015, A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome, Annu. Rev. Genet., 49, 213, 10.1146/annurev-genet-120213-092023
Fromm, 2014, MicroRNA loci support conspecificity of Gyrodactylus salaris and Gyrodactylus thymalli (Platyhelminthes: Monogenea), Int. J. Parasitol., 44, 787, 10.1016/j.ijpara.2014.05.010
Fromm, 2020, MirGeneDB 2.0: the metazoan microRNA complement, Nucleic. Acids Res., 48, D132, 10.1093/nar/gkz885
Fromm, 2017, On the presence and immunoregulatory functions of extracellular microRNAs in the trematode Fasciola hepatica, Parasite Immunol., 39, 10.1111/pim.12399
Fromm, 2015, The revised microRNA complement of Fasciola hepatica reveals a plethora of overlooked microRNAs and evidence for enrichment of immuno-regulatory microRNAs in extracellular vesicles, Int. J. Parasitol., 45, 697, 10.1016/j.ijpara.2015.06.002
Fromm, 2013, Substantial loss of conserved and gain of novel microRNA families in flatworms, Mol. Biol. Evol., 30, 2619, 10.1093/molbev/mst155
Furst, 2012, Global burden of human food-borne trematodiasis: a systematic review and meta-analysis, Lancet Infect. Dis., 12, 210, 10.1016/S1473-3099(11)70294-8
Gebert, 2018, Regulation of microRNA function in animals, Nat. Rev. Mol. Cell Biol., 20, 21, 10.1038/s41580-018-0045-7
Guo, 2019, Profiling circulating microRNAs in serum of Fasciola gigantica-infected buffalo, Mol. Biochem. Parasitol., 232, 10.1016/j.molbiopara.2019.111201
Hansen, 2019, Exploration of extracellular vesicles from provides evidence of parasite-host cross talk, J. Extracell. Vesicles, 8, 1578116, 10.1080/20013078.2019.1578116
Harrington, 2017, Human liver flukes. Lancet, Gastroenterol. Hepatol., 2, 680
He, 2020, A schistosome miRNA promotes host hepatic fibrosis by targeting transforming growth factor beta receptor III, J. Hepatol., 72, 519, 10.1016/j.jhep.2019.10.029
Huang, 2017, ExUTR: a novel pipeline for large-scale prediction of 3'-UTR sequences from NGS data, BMC Genomics, 18, 847, 10.1186/s12864-017-4241-1
Hu, 2020, Proteomic profiling of the liver, hepatic lymph nodes, and spleen of buffaloes infected with Fasciola gigantica, Pathogens, 9, 982, 10.3390/pathogens9120982
Jan, 2011, Formation, regulation and evolution of Caenorhabditis elegans 3'UTRs, Nature, 469, 97, 10.1038/nature09616
Jiang, 2008, SeqMap: mapping massive amount of oligonucleotides to the genome, Bioinformatics, 24, 2395, 10.1093/bioinformatics/btn429
Kanai, 2015, Disrupted tRNA genes and tRNA fragments: a perspective on tRNA gene evolution, Life (Basel), 5, 321
Kang, 2018, miRTrace reveals the organismal origins of microRNA sequencing data, Genome Biol., 19, 213, 10.1186/s13059-018-1588-9
Kenny, 2015, The phylogenetic utility and functional constraint of microRNA flanking sequences, Proc. Biol. Sci., 282, 20142983
King, 2015, Hybridization in parasites: consequences for adaptive evolution, pathogenesis, and public health in a changing world, PLoS Pathog., 11, 10.1371/journal.ppat.1005098
Liu, 2019, Schistosoma japonicum extracellular vesicle miRNA cargo regulates host macrophage functions facilitating parasitism, PLoS Pathog., 15, 10.1371/journal.ppat.1007817
Lyons, 2016, YB-1 regulates tiRNA-induced stress granule formation but not translational repression, Nucleic Acids Res., 44, 6949, 10.1093/nar/gkw418
Macchiaroli, 2015, microRNA profiling in the zoonotic parasite Echinococcus canadensis using a high-throughput approach, Parasit. Vectors, 8, 83, 10.1186/s13071-015-0686-8
Marco, 2013, Clusters of microRNAs emerge by new hairpins in existing transcripts, Nucleic Acids Res., 41, 7745, 10.1093/nar/gkt534
Mas-Coma, 2005, Epidemiology of fascioliasis in human endemic areas, J. Helminthol., 79, 207, 10.1079/JOH2005296
Mas-Coma, 2018, Human fascioliasis infection sources, their diversity, incidence factors, analytical methods and prevention measures, Parasitology, 145, 1665, 10.1017/S0031182018000914
Nowacki, 2015, Protein and small non-coding RNA-enriched extracellular vesicles are released by the pathogenic blood fluke Schistosoma mansoni, J. Extracell. Vesicles, 4, 28665, 10.3402/jev.v4.28665
Ovchinnikov, 2020, EV-transported microRNAs of Schistosoma mansoni and Fasciola hepatica: Potential targets in definitive hosts, Infect. Genet. Evol., 85, 10.1016/j.meegid.2020.104528
Ovchinnikov, 2017, Extreme conservation of miRNA complement in opisthorchiids, Parasitol. Int., 66, 773, 10.1016/j.parint.2017.09.006
Pandey, 2020, Draft genome of the liver fluke Fasciola gigantica, ACS Omega, 5, 11084, 10.1021/acsomega.0c00980
Phalee, 2015, Experimental life history and biological characteristics of Fasciola gigantica (Digenea: Fasciolidae), Korean J. Parasitol., 53, 59, 10.3347/kjp.2015.53.1.59
Rehmsmeier, 2004, Fast and effective prediction of microRNA/target duplexes, RNA, 10, 1507, 10.1261/rna.5248604
Richter, 2018, RNA modification landscape of the human mitochondrial tRNA regulates protein synthesis, Nature Commun., 9, 3966, 10.1038/s41467-018-06471-z
Sokol, 2005, Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth, Genes Dev., 19, 2343, 10.1101/gad.1356105
Sotillo, 2020, The protein and microRNA cargo of extracellular vesicles from parasitic helminths-current status and research priorities, Int. J. Parasitol., 50, 635, 10.1016/j.ijpara.2020.04.010
Taylor, 2020, Trichinella spiralis secretes abundant unencapsulated small RNAs with potential effects on host gene expression, Int. J. Parasitol., 50, 697, 10.1016/j.ijpara.2020.05.008
Toet, 2014, Liver fluke vaccines in ruminants: strategies, progress and future opportunities, Int. J. Parasitol., 44, 915, 10.1016/j.ijpara.2014.07.011
Torgerson, 1999, Epidemiology and control, 113
Torgerson, 2015, World health organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: a data synthesis, PLoS Med., 12, 10.1371/journal.pmed.1001920
Wang, 2020, A microRNA derived from Schistosoma japonicum promotes schistosomiasis hepatic fibrosis by targeting host secreted frizzled-related protein 1, Front. Cell Infect. Microbiol., 10, 101, 10.3389/fcimb.2020.00101
Xiong, 2006, A story with a good ending: tRNA 3'-end maturation by CCA-adding enzymes, Curr. Opin. Struct. Biol., 16, 12, 10.1016/j.sbi.2005.12.001
Xu, 2012, Comparative characterization of microRNAs from the liver flukes Fasciola gigantica and F. hepatica, PLoS One, 7, 10.1371/journal.pone.0053387
Yamasaki, 2009, Angiogenin cleaves tRNA and promotes stress-induced translational repression, J. Cell Biol., 185, 35, 10.1083/jcb.200811106
Young, 2011, A portrait of the transcriptome of the neglected trematode, Fasciola gigantica-biological and biotechnological implications, PLoS Negl. Trop. Dis., 5, 10.1371/journal.pntd.0001004
Yu, 2019, Comprehensive analysis of miRNA profiles reveals the role of Schistosoma japonicum miRNAs at different developmental stages, Vet. Res., 50, 23, 10.1186/s13567-019-0642-2
Zhang, 2019, Global serum proteomic changes in water buffaloes infected with Fasciola gigantica, Parasit. Vectors, 12, 281, 10.1186/s13071-019-3533-5
Zhang, 2020, Comprehensive analysis of non-coding RNA profiles of exosome-like vesicles from the protoscoleces and hydatid cyst fluid of Echinococcus granulosus, Front. Cell Infect. Microbiol., 10, 316, 10.3389/fcimb.2020.00316
Zhang, 2017, De novo transcriptome sequencing and analysis of the juvenile and adult stages of Fasciola gigantica, Infect. Genet. Evol., 51, 33, 10.1016/j.meegid.2017.03.007
Zhang, 2019, Complex and dynamic transcriptional changes allow the helminth Fasciola gigantica to adjust to its intermediate snail and definitive mammalian hosts, BMC Genomics, 20, 729, 10.1186/s12864-019-6103-5
Zhu, 2016, MicroRNAs are involved in the regulation of ovary development in the pathogenic blood fluke Schistosoma japonicum, PLoS Pathog., 12, 10.1371/journal.ppat.1005423