Differential effects of Mycobacterium bovis - derived polar and apolar lipid fractions on bovine innate immune cells
Tóm tắt
Mycobacterial lipids have long been known to modulate the function of a variety of cells of the innate immune system. Here, we report the extraction and characterisation of polar and apolar free lipids from Mycobacterium bovis AF 2122/97 and identify the major lipids present in these fractions. Lipids found included trehalose dimycolate (TDM) and trehalose monomycolate (TMM), the apolar phthiocerol dimycocersates (PDIMs), triacyl glycerol (TAG), pentacyl trehalose (PAT), phenolic glycolipid (PGL), and mono-mycolyl glycerol (MMG). Polar lipids identified included glucose monomycolate (GMM), diphosphatidyl glycerol (DPG), phenylethanolamine (PE) and a range of mono- and di-acylated phosphatidyl inositol mannosides (PIMs). These lipid fractions are capable of altering the cytokine profile produced by fresh and cultured bovine monocytes as well as monocyte derived dendritic cells. Significant increases in the production of IL-10, IL-12, MIP-1β, TNFα and IL-6 were seen after exposure of antigen presenting cells to the polar lipid fraction. Phenotypic characterisation of the cells was performed by flow cytometry and significant decreases in the expression of MHCII, CD86 and CD1b were found after exposure to the polar lipid fraction. Polar lipids also significantly increased the levels of CD40 expressed by monocytes and cultured monocytes but no effect was seen on the constitutively high expression of CD40 on MDDC or on the levels of CD80 expressed by any of the cells. Finally, the capacity of polar fraction treated cells to stimulate alloreactive lymphocytes was assessed. Significant reduction in proliferative activity was seen after stimulation of PBMC by polar fraction treated cultured monocytes whilst no effect was seen after lipid treatment of MDDC. These data demonstrate that pathogenic mycobacterial polar lipids may significantly hamper the ability of the host APCs to induce an appropriate immune response to an invading pathogen.
Tài liệu tham khảo
Srivastava K, Chauhan DS, Gupta P, Singh HB, Sharma VD, Yadav VS, Sreekumaran , Thakral SS, Dharamdheeran JS, Nigam P, Prasad HK, Katoch VM: Isolation of Mycobacterium bovis & M. tuberculosis from cattle of some farms in north India--possible relevance in human health. Indian J Med Res. 2008, 128: 26-31.
Une Y, Mori T: Tuberculosis as a zoonosis from a veterinary perspective. Comp Immunol Microbiol Infect Dis. 2007, 30: 415-425. 10.1016/j.cimid.2007.05.002.
Rodwell TC, Moore M, Moser KS, Brodine SK, Strathdee SA: Tuberculosis from Mycobacterium bovis in binational communities, United States. Emerg Infect Dis. 2008, 14: 909-916. 10.3201/eid1406.071485.
Krebs JR, Anderson R, Clutton-Brock T, Morrison WI, Young DB, Donnelly DA, Frost S, Woodroffe R: Bovine tuberculosis in cattle and badgers - An independent scientific review. Book Bovine tuberculosis in cattle and badgers - An independent scientific review. 1997, Ministry Of Agriculture, Fisheries & Food, City
Bovine TB, ARCHIVE: Key herd / animal statistics (by county). 1998–2010, [http://archive.defra.gov.uk/foodfarm/farmanimal/diseases/atoz/tb/stats/county.htm]
Sinsimer D, Huet G, Manca C, Tsenova L, Koo MS, Kurepina N, Kana B, Mathema B, Marras SA, Kreiswirth BN, Guilhot C, Kaplan G: The phenolic glycolipid of Mycobacterium tuberculosis differentially modulates the early host cytokine response but does not in itself confer hypervirulence. Infect Immun. 2008, 76: 3027-3036. 10.1128/IAI.01663-07.
Lederer E, Adam A, Ciorbaru R, Petit JF, Wietzerbin J: Cell walls of Mycobacteria and related organisms; chemistry and immunostimulant properties. Mol Cell Biochem. 1975, 7: 87-104. 10.1007/BF01792076.
Schlesinger LS: Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol. 1993, 150: 2920-2930.
Pieters J: Entry and survival of pathogenic mycobacteria in macrophages. Microbes Infect. 2001, 3: 249-255. 10.1016/S1286-4579(01)01376-4.
Pugin J, Heumann ID, Tomasz A, Kravchenko VV, Akamatsu Y, Nishijima M, Glauser MP, Tobias PS, Ulevitch RJ: CD14 is a pattern recognition receptor. Immunity. 1994, 1: 509-516. 10.1016/1074-7613(94)90093-0.
Underhill DM, Ozinsky A, Smith KD, Aderem A: Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci U S A. 1999, 96: 14459-14463. 10.1073/pnas.96.25.14459.
Ehlers S: DC-SIGN and mannosylated surface structures of Mycobacterium tuberculosis: a deceptive liaison. Eur J Cell Biol. 2010, 89: 95-101. 10.1016/j.ejcb.2009.10.004.
den Dunnen J, Gringhuis SI, Geijtenbeek TB: Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immunol Immunother. 2009, 58: 1149-1157. 10.1007/s00262-008-0615-1.
Geijtenbeek TB, Gringhuis SI: Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol. 2009, 9: 465-479. 10.1038/nri2569.
Brennan PJ, Draper P: Ultrastructure of Mycobacterium tuberculosis. Tuberculosis: Pathogenesis, Protection and Control. Edited by: Bloom BR. 1994, American Society for Microbiology, Washington DC, 271-284.
Liu J, Rosenberg EY, Nikaido H: Fluidity of the lipid domain of cell wall from Mycobacterium chelonae. Proc Natl Acad Sci U S A. 1995, 92: 11254-11258. 10.1073/pnas.92.24.11254.
Rastogi N: Recent observations concerning structure and function relationships in the mycobacterial cell envelope: elaboration of a model in terms of mycobacterial pathogenicity, virulence and drug-resistance. Res Microbiol. 1991, 142: 464-476. 10.1016/0923-2508(91)90121-P.
Andersen CS, Agger EM, Rosenkrands I, Gomes JM, Bhowruth V, Gibson KJ, Petersen RV, Minnikin DE, Besra GS, Andersen P: A simple mycobacterial monomycolated glycerol lipid has potent immunostimulatory activity. J Immunol. 2009, 182: 424-432.
Reed MB, Domenech P, Manca C, Su H, Barczak AK, Kreiswirth BN, Kaplan G, Barry CE: A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature. 2004, 431: 84-87. 10.1038/nature02837.
Hope JC, Whelan AO, Hewinson RG, Vordermeier M, Howard CJ: Maturation of bovine dendritic cells by lipopeptides. Vet Immunol Immunopathol. 2003, 95: 21-31. 10.1016/S0165-2427(03)00104-1.
Garcia Pelayo MC, Garcia JN, Golby P, Pirson C, Ewer K, Vordermeier M, Hewinson RG, Gordon SV: Gene expression profiling and antigen mining of the tuberculin production strain Mycobacterium bovis AN5. Vet Microbiol. 2009, 133: 272-277. 10.1016/j.vetmic.2008.07.004.
Slayden RA, Barry CE: Analysis of the Lipids of Mycobacterium tuberculosis. Mycobacterium tuberculosis Protocols. Edited by: Parish T, Stoker NG. 2001, Humana Press, Totowa, New Jersey, 229-245. Walker JM (Series Editor)
Dobson G, Minnikin DE, Minnikin SM, Parlett JH, Goodfellow M: Systematic Analysis of Complex Mycobacterial Lipids. Chemical Methods in Bacterial Systematics. Edited by: Ridell M, Magnusson M. 1985, The Society for Applied Bacteriology, London
Coad M, Clifford D, Rhodes SG, Hewinson RG, Vordermeier HM, Whelan AO: Repeat tuberculin skin testing leads to desensitisation in naturally infected tuberculous cattle which is associated with elevated interleukin-10 and decreased interleukin-1 beta responses. Vet Res. 2010, 41: 14-10.1051/vetres/2009062.
Jones GJ, Pirson C, Hewinson RG, Vordermeier HM: Simultaneous measurement of antigen-stimulated interleukin-1β and gamma interferon production enhances test sensitivity for the detection of Mycobacterium bovis infection in cattle. Clin Vacc Immunol. 2010, 17: 1946-1951. 10.1128/CVI.00377-10.
Dandapat P, Verma R, Venkatesan K, Sharma VD, Singh HB, Das R, Katoch VM: Rapid detection of Mycobacterium bovis on its lipid profile by thin layer chromatography. Vet Microbiol. 1999, 65: 145-151. 10.1016/S0378-1135(98)00279-X.
Jarnagin JL, Brennan PJ, Harris SK: Rapid identification of Mycobacterium bovis by a thin-layer chromatographic technique. Am J Vet Res. 1983, 44: 1920-1922.
Lederer E: Cord factor and related synthetic trehalose diesters. Springer Semin Immun. 1979, 2: 133-148. 10.1007/BF01891665.
Dubnau E, Chan J, Raynaud C, Mohan VP, Laneelle MA, Yu K, Quemard A, Smith I, Daffe M: Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol. 2000, 36: 630-637.
Gotoh K, Mitsuyama M, Imaizumi S, Kawamura I, Yano I: Mycolic acid-containing glycolipid as a possible virulence factor of Rhodococcus equi for mice. Microbiol Immunol. 1991, 35: 175-185.
Hattori Y, Matsunaga I, Komori T, Urakawa T, Nakamura T, Fujiwara N, Hiromatsu K, Harashima H, Sugita M: Glycerol monomycolate, a latent tuberculosis-associated mycobacterial lipid, induces eosinophilic hypersensitivity responses in guinea pigs. Biochem Biophys Res Commun. 2011, 409: 304-307. 10.1016/j.bbrc.2011.04.146.
Emoto M, Emoto Y, Buchwalow IB, Kaufmann SH: Induction of IFN-gamma-producing CD4+ natural killer T cells by Mycobacterium bovis bacillus Calmette Guerin. Eur J Immunol. 1999, 29: 650-659. 10.1002/(SICI)1521-4141(199902)29:02<650::AID-IMMU650>3.0.CO;2-M.
Oswald IP, Dozois CM, Petit JF, Lemaire G: Interleukin-12 synthesis is a required step in trehalose dimycolate-induced activation of mouse peritoneal macrophages. Infect Immun. 1997, 65: 1364-1369.
Welsh KJ, Abbott AN, Hwang S-A, Indrigo J, Armitige LY, Blackburn MR, Hunter RL, Actor JK: A role for tumour necrosis factor-α, complement C5 and interleukin-6 in the initiation and development of the mycobacterial cord factor trehalose 6,6′-dimycolate induced granulomatous response. Microbiol. 2008, 154: 1813-1824. 10.1099/mic.0.2008/016923-0.
Otsuka A, Matsunaga I, Komori T, Tomita K, Toda Y, Manabe T, Miyachi Y, Sugita M: Trehalose dimycolate elicits eosinophilic skin hypersensitivity in mycobacteria-infected guinea pigs. J Immunol. 2008, 181: 8528-8533.
Komori T, Nakamura T, Matsunaga I, Morita D, Hattori Y, Kuwata H, Fujiwara N, Hiromatsu K, Harashima H, Sugita M: A microbial glycolipid functions as a new class of target antigen for delayed-type hypersensitivity. J Biol Chem. 2011, 286: 16800-16806. 10.1074/jbc.M110.217224.
Doz E, Rose S, Court N, Front S, Vasseur V, Charron S, Gilleron M, Puzo G, Fremaux I, Delneste Y, Erard F, Ryffel B, Martin OR, Quesniaux VF: Mycobacterial phosphatidylinositol mannosides negatively regulate host Toll-like receptor 4, MyD88-dependent proinflammatory cytokines, and TRIF-dependent co-stimulatory molecule expression. J Biol Chem. 2009, 284: 23187-23196. 10.1074/jbc.M109.037846.
Gehring AJ, Rojas RE, Canaday DH, Lakey DL, Harding CV, Boom WH: The Mycobacterium tuberculosis 19-kilodalton lipoprotein inhibits gamma interferon-regulated HLA-DR and Fc gamma R1 on human macrophages through Toll-like receptor 2. Infect Immun. 2003, 71: 4487-4497. 10.1128/IAI.71.8.4487-4497.2003.
Pai RK, Convery M, Hamilton TA, Boom WH, Harding CV: Inhibition of IFN-gamma-induced class II transactivator expression by a 19-kDa lipoprotein from Mycobacterium tuberculosis: a potential mechanism for immune evasion. J Immunol. 2003, 171: 175-184.
Rocha-Ramirez LM, Estrada-Garcia I, Lopez-Marin LM, Segura-Salinas E, Mendez-Aragon P, Van Soolingen D, Torres-Gonzalez R, Chacon-Salinas R, Estrada-Parra S, Maldonado-Bernal C, López-Macías C, Isibasi A: Mycobacterium tuberculosis lipids regulate cytokines, TLR-2/4 and MHC class II expression in human macrophages. Tuberculosis. 2008, 88: 212-220. 10.1016/j.tube.2007.10.003.
Rajashree P, Krishnan G, Das SD: Impaired phenotype and function of monocyte derived dendritic cells in pulmonary tuberculosis. Tuberculosis. 2009, 89: 77-83. 10.1016/j.tube.2008.07.006.
Gagliardi MC, Teloni R, Mariotti S, Iona E, Pardini M, Fattorini L, Orefici G, Nisini R: Bacillus Calmette-Guerin shares with virulent Mycobacterium tuberculosis the capacity to subvert monocyte differentiation into dendritic cell: implication for its efficacy as a vaccine preventing tuberculosis. Vaccine. 2004, 22: 3848-3857. 10.1016/j.vaccine.2004.07.009.
Gagliardi MC, Lemassu A, Teloni R, Mariotti S, Sargentini V, Pardini M, Daffe M, Nisini R: Cell wall-associated alpha-glucan is instrumental for Mycobacterium tuberculosis to block CD1 molecule expression and disable the function of dendritic cell derived from infected monocyte. Cell Microbiol. 2007, 9: 2081-2092. 10.1111/j.1462-5822.2007.00940.x.
Gagliardi MC, Teloni R, Giannoni F, Mariotti S, Remoli ME, Sargentini V, Videtta M, Pardini M, De Libero G, Coccia EM, Nisini R: Mycobacteria exploit p38 signaling to affect CD1 expression and lipid antigen presentation by human dendritic cells. Infect Immun. 2009, 77: 4947-4952. 10.1128/IAI.00607-09.
Kan-Sutton C, Jagannath C, Hunter RL: Trehalose 6,6'-dimycolate on the surface of Mycobacterium tuberculosis modulates surface marker expression for antigen presentation and costimulation in murine macrophages. Microbes Infect. 2009, 11: 40-48. 10.1016/j.micinf.2008.10.006.
Racioppi L, Cancrini C, Romiti ML, Angelini F, Di Cesare S, Bertini E, Livadiotti S, Gambarara MG, Matarese G, Lago Paz F, Stefanini M, Rossi P: Defective dendritic cell maturation in a child with nucleotide excision repair deficiency and CD4 lymphopenia. Clin Exp Immunol. 2001, 126: 511-518. 10.1046/j.1365-2249.2001.01625.x.
Masten BJ, Yates JL, Pollard Koga AM, Lipscomb MF: Characterisation of accessory molecules in murine lung dendritic cell function: roles for CD80, CD86, CD54, and CD40L. Am J Respir Cell Mol Biol. 1997, 16: 335-342.