Differential cross sections for muonic hydrogen scattering on hydrogen molecules
Tóm tắt
The results of first calculations of the differential cross sections for muonic hydrogen scattering on hydrogen molecules are presented. They are functions of the initial and final kinetic energy of the system and the scattering angle. These calculations are based on the respective set of cross sections for muonic hydrogen scattering on hydrogen nuclei, obtained within the framework of the adiabatic method. The Fermi pseudopotential method is used to estimate the molecular binding effects. The influence of electrons on the cross sections under consideration is described in terms of the effective screening potential. Rotational and vibrational transitions are taken into account. The calculated molecular differential cross sections show a strong angular dependence. This effect is very significant for the electronic contributions to the cross sections, e.g. for collision energies above approximately 0.1 eV only the cross sections of small scattering angles are influenced considerably by the screening. Since these differential cross sections give detailed information about the final energies and complicated angular distributions of the scattered muonic atoms they are the proper basis for calculations concerning the deceleration of muonic hydrogen atoms in molecular hydrogen targets and for Monte Carlo simulations of different experiments in muonic physics.
Tài liệu tham khảo
L.I. Ponomarev, Contemp. Phys. 31 (1991) 219.
W.H. Breunlich, P. Kammel, J.S. Cohen and M. Leon, Ann. Rev. Nucl. Part. Sci. 39 (1989) 311.
L. Bracci, C. Chiccoli, G. Fiorentini et al., Muon Catal. Fusion 5 (1990) 21.
C. Chiccoli, V.I. Korobov, V.S. Melezhik et al., Muon Catal. Fusion 7 (1992) 87.
A. Adamczak, C. Chiccoli, V.I. Korobov et al., Phys. Lett. B285 (1992) 319.
S.I. Vinitsky and L.I. Ponomarev, Elem. Chast. Atomn. Yadr. 13 (1982) 1336 [Sov. Particles and Nuclei 13 (1982) 557].
V.S. Melezhik, J. Comp. Phys. 65 (1986) 1.
A.V. Kravtsov, A.I. Mikhailov and N.P. Popov, J. Phys. B19 (1986) 1323.
A. Adamczak, V.S. Melezhik and L.I. Menshikov, Z. Phys. D4 (1986) 153.
J.S. Cohen, Muon Catal. Fusion 6 (1991) 3.
E. Fermi, Rev. Sci. 3 (1936) 13.
S.S. Gershtein, Zh. Eksp. Teor. Fiz. 34 (1958) 993 [Sov. Phys. JETP 7 (1958) 685].
L.I. Menshikov, Preprint IAE-3811/12, Moscow (1983).
A. Adamczak, Muon Catal. Fusion 4 (1989) 31.
A. Adamczak and V.S. Melezhik, Muon Catal. Fusion 4 (1990) 303.
A. Adamczak, V.I. Korobov and V.S. Melezhik, Muon Catal. Fusion 7 (1992) 309.
D.J. Abbott, J.B. Kraiman, R.T. Siegel et al.,Workshop on Muonic Atoms and Molecules, Ascona, 1992.
G.M. Marshall, J.L. Beverige, J.M. Bailey et al.,Workshop on Muonic Atoms and Molecules, Ascona, 1992.
V.S. Melezhik and J. Woźniak, Muon Catal. Fusion 7 (1992) 203.
F. Mulhauser, H. Schneuwly, R. Jacot-Guillarmod et al., Muon Catal. Fusion 4 (1989) 365.
H. Schneuwly and F. Mulhauser, Phys. Lett. A160 (1991) 71.
A. Bertin, I. Massa, M. Piccinini et al., Phys. Lett. B78 (1978) 355.
A. Bertin, I. Massa, M. Piccinini et al., Phys. Lett. B85 (1979) 458.
P. Kammel,Workshop on Muonic Atoms and Molecules, Ascona, 1992.