Differential alkylation-based redox proteomics – Lessons learnt

Redox Biology - Tập 6 - Trang 240-252 - 2015
Katarzyna Wojdyla1, Adelina Rogowska-Wrzesinska1
1Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

Tài liệu tham khảo

Held, 2012, Regulatory control or oxidative damage? Proteomic approaches to interrogate the role of cysteine oxidation status in biological processes, Mol. Cell. Proteom., 11, 10.1074/mcp.R111.013037 Biteau, 2003, ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin, Nature, 425, 980, 10.1038/nature02075 Chang, 2004, Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine, J. Biol. Chem., 279, 50994, 10.1074/jbc.M409482200 Rhee, 2007, Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance, Kidney Int. Suppl., 106, S3, 10.1038/sj.ki.5002380 Tom, 2013, Fat chance! Getting a grip on a slippery modification, ACS Chem. Biol., 8, 46, 10.1021/cb300607e Couvertier, 2014, Chemical-proteomic strategies to investigate cysteine posttranslational modifications, Biochim. Biophys. Acta, 1844, 2315, 10.1016/j.bbapap.2014.09.024 Evangelista, 2013, S-nitrosylation: specificity, occupancy, and interaction with other post-translational modifications, Antioxid. Redox Signal., 19, 1209, 10.1089/ars.2012.5056 Lin, 2012, Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice, Plant Physiol., 158, 451, 10.1104/pp.111.184531 Murphy, 2014, Signaling by S-nitrosylation in the heart, J. Mol. Cell. Cardiol., 73, 18, 10.1016/j.yjmcc.2014.01.003 Moon, 2005, Inhibition of mitochondrial aldehyde dehydrogenase by nitric oxide-mediated S-nitrosylation, FEBS Lett., 579, 6115, 10.1016/j.febslet.2005.09.082 Moon, 2007, Inactivation of cytosolic aldehyde dehydrogenase via S-nitrosylation in ethanol-exposed rat liver, FEBS Lett., 581, 3967, 10.1016/j.febslet.2007.07.037 Gupta, 2014, Sulfenic acid chemistry, detection and cellular lifetime, Biochim. Biophys. Acta, 1840, 847, 10.1016/j.bbagen.2013.05.040 Dalle-Donne, 2005, Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics, Mass Spectrom. Rev., 24, 55, 10.1002/mas.20006 Salmeen, 2003, Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate, Nature, 423, 769, 10.1038/nature01680 Burgoyne, 2010, A rapid approach for the detection, quantification, and discovery of novel sulfenic acid or S-nitrosothiol modified proteins using a biotin-switch method, Methods Enzymol., 473, 281, 10.1016/S0076-6879(10)73015-9 Seth, 2012, Endogenous protein S-Nitrosylation in E. coli: regulation by OxyR, Science, 336, 470, 10.1126/science.1215643 Ray, 2012, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cell. Signal., 24, 981, 10.1016/j.cellsig.2012.01.008 Chung, 2013, Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system, Circ. Res., 112, 382, 10.1161/CIRCRESAHA.112.268680 Chiappetta, 2010, Proteome screens for Cys residues oxidation: the redoxome, Methods Enzymol., 473, 199, 10.1016/S0076-6879(10)73010-X Ellman, 1959, Tissue sulfhydryl groups, Arch. Biochem. Biophys., 82, 70, 10.1016/0003-9861(59)90090-6 Stamler, 1992, Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin, Proc. Natl. Acad. Sci. U.S.A., 89, 7674, 10.1073/pnas.89.16.7674 Jones, 2011, Mapping the cysteine proteome: analysis of redox-sensing thiols, Curr. Opin. Chem. Biol., 15, 103, 10.1016/j.cbpa.2010.12.014 Ratnayake, 2013, Stabilising cysteinyl thiol oxidation and nitrosation for proteomic analysis, J. Proteom., 92, 160, 10.1016/j.jprot.2013.06.019 Jaffrey, 2001, The biotin switch method for the detection of S-nitrosylated proteins, Sci. STKE, 2001, pl1, 10.1126/stke.2001.86.pl1 Saurin, 2004, Widespread sulfenic acid formation in tissues in response to hydrogen peroxide, Proc. Natl. Acad. Sci. U.S.A., 101, 17982, 10.1073/pnas.0404762101 Shelton, 2005, Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation, Antioxid. Redox Signal., 7, 348, 10.1089/ars.2005.7.348 Garcia-Santamarina, 2011, The oxidized thiol proteome in fission yeast – optimization of an ICAT-based method to identify H2O2-oxidized proteins, J. Proteom., 74, 2476, 10.1016/j.jprot.2011.05.030 Fares, 2014, Simultaneous identification and quantification of nitrosylation sites by combination of biotin switch and ICAT labeling, Methods Mol. Biol., 1072, 609, 10.1007/978-1-62703-631-3_41 Qu, 2014, Proteomic quantification and site-mapping of S-nitrosylated proteins using isobaric iodoTMT reagents, J. Proteome Res., 13, 3200, 10.1021/pr401179v Wojdyla, 2015, The SNO/SOH TMT strategy for combinatorial analysis of reversible cysteine oxidations, J. Proteom., 113, 415, 10.1016/j.jprot.2014.10.015 Stone, 2006, Hydrogen peroxide: a signaling messenger, Antioxid. Redox Signal., 8, 243, 10.1089/ars.2006.8.243 Truong, 2011, Isotope-coded chemical reporter and acid-cleavable affinity reagents for monitoring protein sulfenic acids, Bioorg. Med. Chem. Lett., 21, 5015, 10.1016/j.bmcl.2011.04.115 Garcia-Santamarina, 2014, Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry, Nat. Protoc., 9, 1131, 10.1038/nprot.2014.065 Doulias, 2013, Site specific identification of endogenous S-nitrosocysteine proteomes, J. Proteom., 92, 195, 10.1016/j.jprot.2013.05.033 Su, 2013, Quantitative site-specific reactivity profiling of S-nitrosylation in mouse skeletal muscle using cysteinyl peptide enrichment coupled with mass spectrometry, Free Radic. Biol. Med., 57, 68, 10.1016/j.freeradbiomed.2012.12.010 Hansen, 2009, An introduction to methods for analyzing thiols and disulfides: Reactions, reagents, and practical considerations, Anal. Biochem., 394, 147, 10.1016/j.ab.2009.07.051 Leonard, 2011, Chemical ‘omics’ approaches for understanding protein cysteine oxidation in biology, Curr. Opin. Chem. Biol., 15, 88, 10.1016/j.cbpa.2010.11.012 Bachi, 2013, Redox proteomics: chemical principles, methodological approaches and biological/biomedical promises, Chem. Rev., 113, 596, 10.1021/cr300073p Sherer, 2002, An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage, J. Neurosci., 22, 7006, 10.1523/JNEUROSCI.22-16-07006.2002 Halliwell, 1992, Biologically relevant metal ion-dependent hydroxyl radical generation. An update, FEBS Lett., 307, 108, 10.1016/0014-5793(92)80911-Y Rogowska-Wrzesinska, 2014, Analysis of protein carbonylation – pitfalls and promise in commonly used methods, Free Radic. Res., 48, 1145, 10.3109/10715762.2014.944868 Al-Sa’doni, 1997, Neocuproine, a selective Cu(I) chelator, and the relaxation of rat vascular smooth muscle by S-nitrosothiols, Br. J. Pharmacol., 121, 1047, 10.1038/sj.bjp.0701218 Klomsiri, 2010, Use of dimedone-based chemical probes for sulfenic acid detection evaluation of conditions affecting probe incorporation into redox-sensitive proteins, Methods Enzymol., 473, 77, 10.1016/S0076-6879(10)73003-2 Paulech, 2013, Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome, Anal. Chem., 85, 3774, 10.1021/ac400166e Doulias, 2010, Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation, Proc. Natl. Acad. Sci. U.S.A., 107, 16958, 10.1073/pnas.1008036107 Doulias, 2013, Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation, Sci. Signal., 6, rs1, 10.1126/scisignal.2003252 Ben-Lulu, 2014, A substrate trapping approach identifies proteins regulated by reversible S-nitrosylation, Mol. Cell. Proteom., 13, 2573, 10.1074/mcp.M114.038166 Karala, 2007, Does s-methyl methanethiosulfonate trap the thiol-disulfide state of proteins?, Antioxid. Redox Signal., 9, 527, 10.1089/ars.2006.1473 Hurd, 2007, Detection of reactive oxygen species-sensitive thiol proteins by redox difference gel electrophoresis: implications for mitochondrial redox signaling, J. Biol. Chem., 282, 22040, 10.1074/jbc.M703591200 Riederer, 2007, Differential protein labeling with thiol-reactive infrared DY-680 and DY-780 maleimides and analysis by two-dimensional gel electrophoresis, Proteomics, 7, 1753, 10.1002/pmic.200601007 Mermelekas, 2013, Redox proteomics: from residue modifications to putative biomarker identification by gel- and LC–MS-based approaches, Expert Rev. Proteom., 10, 537, 10.1586/14789450.2013.855611 Murray, 2012, Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay, Mol. Cell. Proteom., 11, 10.1074/mcp.M111.013441 Scheving, 2012, Protein S-nitrosylation and denitrosylation in the mouse spinal cord upon injury of the sciatic nerve, J. Proteom., 75, 3987, 10.1016/j.jprot.2012.05.006 Murray, 2013, Quantification of mitochondrial S-nitrosylation by CysTMT(6) switch assay, Methods Mol. Biol., 1005, 169, 10.1007/978-1-62703-386-2_14 Holmes, 2000, Reaction of ascorbic acid with S-nitrosothiols: clear evidence for two distinct reaction pathways, J. Chem. Soc.: Perkin Trans. 2, 8, 1639 Wang, 2008, Copper dependence of the biotin switch assay: modified assay for measuring cellular and blood nitrosated proteins, Free Radic. Biol. Med., 44, 1362, 10.1016/j.freeradbiomed.2007.12.032 Kallakunta, 2010, Sinapinic acid can replace ascorbate in the biotin switch assay, Biochim. Biophys. Acta, 1800, 23, 10.1016/j.bbagen.2009.10.004 Tyther, 2010, Proteomic profiling of perturbed protein sulfenation in renal medulla of the spontaneously hypertensive rat, J. Proteome Res., 9, 2678, 10.1021/pr1001719 Forrester, 2009, Detection of protein S-nitrosylation with the biotin-switch technique, Free Radic. Biol. Med., 46, 119, 10.1016/j.freeradbiomed.2008.09.034 Gow, 2004, Immunohistochemical detection of S-nitrosylated proteins, Methods Mol. Biol., 279, 167 Held, 2010, Targeted quantitation of site-specific cysteine oxidation in endogenous proteins using a differential alkylation and multiple reaction monitoring mass spectrometry approach, Mol. Cell. Proteom., 9, 1400, 10.1074/mcp.M900643-MCP200 Forrester, 2009, Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture, Nat. Biotechnol., 27, 557, 10.1038/nbt.1545 Gygi, 1999, Quantitative analysis of complex protein mixtures using isotope-coded affinity tags, Nat. Biotechnol., 17, 994, 10.1038/13690 Kohr, 2012, Measurement of S-nitrosylation occupancy in the myocardium with cysteine-reactive tandem mass tags: short communication, Circ. Res., 111, 1308, 10.1161/CIRCRESAHA.112.271320 Pan, 2014, Mass spectrometry-based quantitative proteomics for dissecting multiplexed redox cysteine modifications in nitric oxide-protected cardiomyocyte under hypoxia, Antioxid. Redox Signal., 20, 1365, 10.1089/ars.2013.5326 Saville, 1958, A scheme for the colorimetric determination of microgram amounts of thiols, Analyst, 83, 670, 10.1039/an9588300670 Pesavento, 2007, Mild performic acid oxidation enhances chromatographic and top down mass spectrometric analyses of histones, Mol. Cell. Proteom., 6, 1510, 10.1074/mcp.M600404-MCP200 Benitez, 1974, The inactivation of the acyl phosphatase activity catalyzed by the sulfenic acid form of glyceraldehyde 3-phosphate dehydrogenase by dimedone and olefins, J. Biol. Chem., 249, 6234, 10.1016/S0021-9258(19)42244-8 Seo, 2011, Quantification of protein sulfenic acid modifications using isotope-coded dimedone and iododimedone, Angew. Chem. Int. Ed. Engl., 50, 1342, 10.1002/anie.201007175 Seo, 2009, Facile synthesis and biological evaluation of a cell-permeable probe to detect redox-regulated proteins, Bioorg. Med. Chem. Lett., 19, 356, 10.1016/j.bmcl.2008.11.073 Leonard, 2009, Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells, ACS Chem. Biol., 4, 783, 10.1021/cb900105q Cheng, 2012, Activity of the tetrapyrrole regulator CrtJ is controlled by oxidation of a redox active cysteine located in the DNA binding domain, Mol. Microbiol., 85, 734, 10.1111/j.1365-2958.2012.08135.x Barrett, 2012, Inactivation of thiol-dependent enzymes by hypothiocyanous acid: role of sulfenyl thiocyanate and sulfenic acid intermediates, Free Radic. Biol. Med., 52, 1075, 10.1016/j.freeradbiomed.2011.12.024 Wojdyla, 2014 Oda, 2001, Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome, Nat. Biotechnol., 19, 379, 10.1038/86783 Boja, 2001, Overalkylation of a protein digest with iodoacetamide, Anal. Chem., 73, 3576, 10.1021/ac0103423 Sinha, 2010, Proteomic and mass spectroscopic quantitation of protein S-nitrosation differentiates NO-donors, ACS Chem. Biol., 5, 667, 10.1021/cb100054m Wang, 2014, Proteomic profiling of nitrosative stress: protein S-oxidation accompanies S-nitrosylation, ACS Chem. Biol., 9, 821, 10.1021/cb400547u Guo, 2014, Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications, Nat. Protoc., 9, 64, 10.1038/nprot.2013.161 Neilson, 2011, Less label, more free: approaches in label-free quantitative mass spectrometry, Proteomics, 11, 535, 10.1002/pmic.201000553 Bantscheff, 2007, Quantitative mass spectrometry in proteomics: a critical review, Anal. Bioanal. Chem., 389, 1017, 10.1007/s00216-007-1486-6 Kohr, 2011, Characterization of potential S-nitrosylation sites in the myocardium, Am. J. Physiol. Heart Circ. Physiol., 300, H1327, 10.1152/ajpheart.00997.2010 Olsen, 2013, Status of large-scale analysis of post-translational modifications by mass spectrometry, Mol. Cell. Proteom., 12, 3444, 10.1074/mcp.O113.034181 Leichert, 2008, Quantifying changes in the thiol redox proteome upon oxidative stress in vivo, Proc. Natl. Acad. Sci. U.S.A., 105, 8197, 10.1073/pnas.0707723105 Martinez-Acedo, 2012, A novel strategy for global analysis of the dynamic thiol redox proteome, Mol. Cell. Proteom., 11, 800, 10.1074/mcp.M111.016469 Murray, 2012, A twist on quantification: measuring the site occupancy of S-nitrosylation, Circ. Res., 111, 1253, 10.1161/CIRCRESAHA.112.278721 Faccenda, 2010, Gold nanoparticle enrichment method for identifying S-nitrosylation and S-glutathionylation sites in proteins, J. Am. Chem. Soc., 132, 11392, 10.1021/ja103591v Engholm-Keller, 2012, TiSH – a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC, J. Proteom., 75, 5749, 10.1016/j.jprot.2012.08.007 Reddie, 2008, A chemical approach for detecting sulfenic acid-modified proteins in living cells, Mol. Biosyst., 4, 521, 10.1039/b719986d Schwammle, 2014, Large scale analysis of co-existing post-translational modifications in histone tails reveals global fine structure of cross-talk, Mol. Cell. Proteom., 13, 1855, 10.1074/mcp.O113.036335 Thamsen, 2011, The redoxome: proteomic analysis of cellular redox networks, Curr. Opin. Chem. Biol., 15, 113, 10.1016/j.cbpa.2010.11.013 Wu, 2013, Functional proteomics approaches for the identification of transnitrosylase and denitrosylase targets, Methods, 62, 151, 10.1016/j.ymeth.2013.02.002 Chen, 2010, S-alkylating labeling strategy for site-specific identification of the s-nitrosoproteome, J. Proteome Res., 9, 6417, 10.1021/pr100680a Ben-Lulu, 2014, A substrate trapping approach identifies proteins regulated by reversible S-nitrosylation, Mol. Cell. Proteom., 13, 2573, 10.1074/mcp.M114.038166 Wu, 2011, Distinction of thioredoxin transnitrosylation and denitrosylation target proteins by the ICAT quantitative approach, J. Proteom., 74, 2498, 10.1016/j.jprot.2011.06.001 Lee, 2014, Protein microarray characterization of the S-nitrosoproteome, Mol. Cell. Proteom., 13, 63, 10.1074/mcp.M113.032235 Lam, 2010, Comprehensive identification and modified-site mapping of S-nitrosylated targets in prostate epithelial cells, PLoS One, 5, e9075, 10.1371/journal.pone.0009075 Torta, 2012, Quantitative analysis of S-nitrosylated proteins, Methods Mol. Biol., 893, 405, 10.1007/978-1-61779-885-6_25 Fares, 2011, Proteomics investigation of endogenous S-nitrosylation in Arabidopsis, Biochem. Biophys. Res. Commun., 416, 331, 10.1016/j.bbrc.2011.11.036 Takanishi, 2011, A genetically encoded probe for the identification of proteins that form sulfenic acid in response to H2O2 in Saccharomyces cerevisiae, J. Proteome Res., 10, 2715, 10.1021/pr1009542