Differential alkylation-based redox proteomics – Lessons learnt
Tài liệu tham khảo
Held, 2012, Regulatory control or oxidative damage? Proteomic approaches to interrogate the role of cysteine oxidation status in biological processes, Mol. Cell. Proteom., 11, 10.1074/mcp.R111.013037
Biteau, 2003, ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin, Nature, 425, 980, 10.1038/nature02075
Chang, 2004, Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine, J. Biol. Chem., 279, 50994, 10.1074/jbc.M409482200
Rhee, 2007, Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance, Kidney Int. Suppl., 106, S3, 10.1038/sj.ki.5002380
Tom, 2013, Fat chance! Getting a grip on a slippery modification, ACS Chem. Biol., 8, 46, 10.1021/cb300607e
Couvertier, 2014, Chemical-proteomic strategies to investigate cysteine posttranslational modifications, Biochim. Biophys. Acta, 1844, 2315, 10.1016/j.bbapap.2014.09.024
Evangelista, 2013, S-nitrosylation: specificity, occupancy, and interaction with other post-translational modifications, Antioxid. Redox Signal., 19, 1209, 10.1089/ars.2012.5056
Lin, 2012, Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice, Plant Physiol., 158, 451, 10.1104/pp.111.184531
Murphy, 2014, Signaling by S-nitrosylation in the heart, J. Mol. Cell. Cardiol., 73, 18, 10.1016/j.yjmcc.2014.01.003
Moon, 2005, Inhibition of mitochondrial aldehyde dehydrogenase by nitric oxide-mediated S-nitrosylation, FEBS Lett., 579, 6115, 10.1016/j.febslet.2005.09.082
Moon, 2007, Inactivation of cytosolic aldehyde dehydrogenase via S-nitrosylation in ethanol-exposed rat liver, FEBS Lett., 581, 3967, 10.1016/j.febslet.2007.07.037
Gupta, 2014, Sulfenic acid chemistry, detection and cellular lifetime, Biochim. Biophys. Acta, 1840, 847, 10.1016/j.bbagen.2013.05.040
Dalle-Donne, 2005, Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics, Mass Spectrom. Rev., 24, 55, 10.1002/mas.20006
Salmeen, 2003, Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate, Nature, 423, 769, 10.1038/nature01680
Burgoyne, 2010, A rapid approach for the detection, quantification, and discovery of novel sulfenic acid or S-nitrosothiol modified proteins using a biotin-switch method, Methods Enzymol., 473, 281, 10.1016/S0076-6879(10)73015-9
Seth, 2012, Endogenous protein S-Nitrosylation in E. coli: regulation by OxyR, Science, 336, 470, 10.1126/science.1215643
Ray, 2012, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cell. Signal., 24, 981, 10.1016/j.cellsig.2012.01.008
Chung, 2013, Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system, Circ. Res., 112, 382, 10.1161/CIRCRESAHA.112.268680
Chiappetta, 2010, Proteome screens for Cys residues oxidation: the redoxome, Methods Enzymol., 473, 199, 10.1016/S0076-6879(10)73010-X
Ellman, 1959, Tissue sulfhydryl groups, Arch. Biochem. Biophys., 82, 70, 10.1016/0003-9861(59)90090-6
Stamler, 1992, Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin, Proc. Natl. Acad. Sci. U.S.A., 89, 7674, 10.1073/pnas.89.16.7674
Jones, 2011, Mapping the cysteine proteome: analysis of redox-sensing thiols, Curr. Opin. Chem. Biol., 15, 103, 10.1016/j.cbpa.2010.12.014
Ratnayake, 2013, Stabilising cysteinyl thiol oxidation and nitrosation for proteomic analysis, J. Proteom., 92, 160, 10.1016/j.jprot.2013.06.019
Jaffrey, 2001, The biotin switch method for the detection of S-nitrosylated proteins, Sci. STKE, 2001, pl1, 10.1126/stke.2001.86.pl1
Saurin, 2004, Widespread sulfenic acid formation in tissues in response to hydrogen peroxide, Proc. Natl. Acad. Sci. U.S.A., 101, 17982, 10.1073/pnas.0404762101
Shelton, 2005, Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation, Antioxid. Redox Signal., 7, 348, 10.1089/ars.2005.7.348
Garcia-Santamarina, 2011, The oxidized thiol proteome in fission yeast – optimization of an ICAT-based method to identify H2O2-oxidized proteins, J. Proteom., 74, 2476, 10.1016/j.jprot.2011.05.030
Fares, 2014, Simultaneous identification and quantification of nitrosylation sites by combination of biotin switch and ICAT labeling, Methods Mol. Biol., 1072, 609, 10.1007/978-1-62703-631-3_41
Qu, 2014, Proteomic quantification and site-mapping of S-nitrosylated proteins using isobaric iodoTMT reagents, J. Proteome Res., 13, 3200, 10.1021/pr401179v
Wojdyla, 2015, The SNO/SOH TMT strategy for combinatorial analysis of reversible cysteine oxidations, J. Proteom., 113, 415, 10.1016/j.jprot.2014.10.015
Stone, 2006, Hydrogen peroxide: a signaling messenger, Antioxid. Redox Signal., 8, 243, 10.1089/ars.2006.8.243
Truong, 2011, Isotope-coded chemical reporter and acid-cleavable affinity reagents for monitoring protein sulfenic acids, Bioorg. Med. Chem. Lett., 21, 5015, 10.1016/j.bmcl.2011.04.115
Garcia-Santamarina, 2014, Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry, Nat. Protoc., 9, 1131, 10.1038/nprot.2014.065
Doulias, 2013, Site specific identification of endogenous S-nitrosocysteine proteomes, J. Proteom., 92, 195, 10.1016/j.jprot.2013.05.033
Su, 2013, Quantitative site-specific reactivity profiling of S-nitrosylation in mouse skeletal muscle using cysteinyl peptide enrichment coupled with mass spectrometry, Free Radic. Biol. Med., 57, 68, 10.1016/j.freeradbiomed.2012.12.010
Hansen, 2009, An introduction to methods for analyzing thiols and disulfides: Reactions, reagents, and practical considerations, Anal. Biochem., 394, 147, 10.1016/j.ab.2009.07.051
Leonard, 2011, Chemical ‘omics’ approaches for understanding protein cysteine oxidation in biology, Curr. Opin. Chem. Biol., 15, 88, 10.1016/j.cbpa.2010.11.012
Bachi, 2013, Redox proteomics: chemical principles, methodological approaches and biological/biomedical promises, Chem. Rev., 113, 596, 10.1021/cr300073p
Sherer, 2002, An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage, J. Neurosci., 22, 7006, 10.1523/JNEUROSCI.22-16-07006.2002
Halliwell, 1992, Biologically relevant metal ion-dependent hydroxyl radical generation. An update, FEBS Lett., 307, 108, 10.1016/0014-5793(92)80911-Y
Rogowska-Wrzesinska, 2014, Analysis of protein carbonylation – pitfalls and promise in commonly used methods, Free Radic. Res., 48, 1145, 10.3109/10715762.2014.944868
Al-Sa’doni, 1997, Neocuproine, a selective Cu(I) chelator, and the relaxation of rat vascular smooth muscle by S-nitrosothiols, Br. J. Pharmacol., 121, 1047, 10.1038/sj.bjp.0701218
Klomsiri, 2010, Use of dimedone-based chemical probes for sulfenic acid detection evaluation of conditions affecting probe incorporation into redox-sensitive proteins, Methods Enzymol., 473, 77, 10.1016/S0076-6879(10)73003-2
Paulech, 2013, Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome, Anal. Chem., 85, 3774, 10.1021/ac400166e
Doulias, 2010, Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation, Proc. Natl. Acad. Sci. U.S.A., 107, 16958, 10.1073/pnas.1008036107
Doulias, 2013, Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation, Sci. Signal., 6, rs1, 10.1126/scisignal.2003252
Ben-Lulu, 2014, A substrate trapping approach identifies proteins regulated by reversible S-nitrosylation, Mol. Cell. Proteom., 13, 2573, 10.1074/mcp.M114.038166
Karala, 2007, Does s-methyl methanethiosulfonate trap the thiol-disulfide state of proteins?, Antioxid. Redox Signal., 9, 527, 10.1089/ars.2006.1473
Hurd, 2007, Detection of reactive oxygen species-sensitive thiol proteins by redox difference gel electrophoresis: implications for mitochondrial redox signaling, J. Biol. Chem., 282, 22040, 10.1074/jbc.M703591200
Riederer, 2007, Differential protein labeling with thiol-reactive infrared DY-680 and DY-780 maleimides and analysis by two-dimensional gel electrophoresis, Proteomics, 7, 1753, 10.1002/pmic.200601007
Mermelekas, 2013, Redox proteomics: from residue modifications to putative biomarker identification by gel- and LC–MS-based approaches, Expert Rev. Proteom., 10, 537, 10.1586/14789450.2013.855611
Murray, 2012, Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay, Mol. Cell. Proteom., 11, 10.1074/mcp.M111.013441
Scheving, 2012, Protein S-nitrosylation and denitrosylation in the mouse spinal cord upon injury of the sciatic nerve, J. Proteom., 75, 3987, 10.1016/j.jprot.2012.05.006
Murray, 2013, Quantification of mitochondrial S-nitrosylation by CysTMT(6) switch assay, Methods Mol. Biol., 1005, 169, 10.1007/978-1-62703-386-2_14
Holmes, 2000, Reaction of ascorbic acid with S-nitrosothiols: clear evidence for two distinct reaction pathways, J. Chem. Soc.: Perkin Trans. 2, 8, 1639
Wang, 2008, Copper dependence of the biotin switch assay: modified assay for measuring cellular and blood nitrosated proteins, Free Radic. Biol. Med., 44, 1362, 10.1016/j.freeradbiomed.2007.12.032
Kallakunta, 2010, Sinapinic acid can replace ascorbate in the biotin switch assay, Biochim. Biophys. Acta, 1800, 23, 10.1016/j.bbagen.2009.10.004
Tyther, 2010, Proteomic profiling of perturbed protein sulfenation in renal medulla of the spontaneously hypertensive rat, J. Proteome Res., 9, 2678, 10.1021/pr1001719
Forrester, 2009, Detection of protein S-nitrosylation with the biotin-switch technique, Free Radic. Biol. Med., 46, 119, 10.1016/j.freeradbiomed.2008.09.034
Gow, 2004, Immunohistochemical detection of S-nitrosylated proteins, Methods Mol. Biol., 279, 167
Held, 2010, Targeted quantitation of site-specific cysteine oxidation in endogenous proteins using a differential alkylation and multiple reaction monitoring mass spectrometry approach, Mol. Cell. Proteom., 9, 1400, 10.1074/mcp.M900643-MCP200
Forrester, 2009, Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture, Nat. Biotechnol., 27, 557, 10.1038/nbt.1545
Gygi, 1999, Quantitative analysis of complex protein mixtures using isotope-coded affinity tags, Nat. Biotechnol., 17, 994, 10.1038/13690
Kohr, 2012, Measurement of S-nitrosylation occupancy in the myocardium with cysteine-reactive tandem mass tags: short communication, Circ. Res., 111, 1308, 10.1161/CIRCRESAHA.112.271320
Pan, 2014, Mass spectrometry-based quantitative proteomics for dissecting multiplexed redox cysteine modifications in nitric oxide-protected cardiomyocyte under hypoxia, Antioxid. Redox Signal., 20, 1365, 10.1089/ars.2013.5326
Saville, 1958, A scheme for the colorimetric determination of microgram amounts of thiols, Analyst, 83, 670, 10.1039/an9588300670
Pesavento, 2007, Mild performic acid oxidation enhances chromatographic and top down mass spectrometric analyses of histones, Mol. Cell. Proteom., 6, 1510, 10.1074/mcp.M600404-MCP200
Benitez, 1974, The inactivation of the acyl phosphatase activity catalyzed by the sulfenic acid form of glyceraldehyde 3-phosphate dehydrogenase by dimedone and olefins, J. Biol. Chem., 249, 6234, 10.1016/S0021-9258(19)42244-8
Seo, 2011, Quantification of protein sulfenic acid modifications using isotope-coded dimedone and iododimedone, Angew. Chem. Int. Ed. Engl., 50, 1342, 10.1002/anie.201007175
Seo, 2009, Facile synthesis and biological evaluation of a cell-permeable probe to detect redox-regulated proteins, Bioorg. Med. Chem. Lett., 19, 356, 10.1016/j.bmcl.2008.11.073
Leonard, 2009, Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells, ACS Chem. Biol., 4, 783, 10.1021/cb900105q
Cheng, 2012, Activity of the tetrapyrrole regulator CrtJ is controlled by oxidation of a redox active cysteine located in the DNA binding domain, Mol. Microbiol., 85, 734, 10.1111/j.1365-2958.2012.08135.x
Barrett, 2012, Inactivation of thiol-dependent enzymes by hypothiocyanous acid: role of sulfenyl thiocyanate and sulfenic acid intermediates, Free Radic. Biol. Med., 52, 1075, 10.1016/j.freeradbiomed.2011.12.024
Wojdyla, 2014
Oda, 2001, Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome, Nat. Biotechnol., 19, 379, 10.1038/86783
Boja, 2001, Overalkylation of a protein digest with iodoacetamide, Anal. Chem., 73, 3576, 10.1021/ac0103423
Sinha, 2010, Proteomic and mass spectroscopic quantitation of protein S-nitrosation differentiates NO-donors, ACS Chem. Biol., 5, 667, 10.1021/cb100054m
Wang, 2014, Proteomic profiling of nitrosative stress: protein S-oxidation accompanies S-nitrosylation, ACS Chem. Biol., 9, 821, 10.1021/cb400547u
Guo, 2014, Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications, Nat. Protoc., 9, 64, 10.1038/nprot.2013.161
Neilson, 2011, Less label, more free: approaches in label-free quantitative mass spectrometry, Proteomics, 11, 535, 10.1002/pmic.201000553
Bantscheff, 2007, Quantitative mass spectrometry in proteomics: a critical review, Anal. Bioanal. Chem., 389, 1017, 10.1007/s00216-007-1486-6
Kohr, 2011, Characterization of potential S-nitrosylation sites in the myocardium, Am. J. Physiol. Heart Circ. Physiol., 300, H1327, 10.1152/ajpheart.00997.2010
Olsen, 2013, Status of large-scale analysis of post-translational modifications by mass spectrometry, Mol. Cell. Proteom., 12, 3444, 10.1074/mcp.O113.034181
Leichert, 2008, Quantifying changes in the thiol redox proteome upon oxidative stress in vivo, Proc. Natl. Acad. Sci. U.S.A., 105, 8197, 10.1073/pnas.0707723105
Martinez-Acedo, 2012, A novel strategy for global analysis of the dynamic thiol redox proteome, Mol. Cell. Proteom., 11, 800, 10.1074/mcp.M111.016469
Murray, 2012, A twist on quantification: measuring the site occupancy of S-nitrosylation, Circ. Res., 111, 1253, 10.1161/CIRCRESAHA.112.278721
Faccenda, 2010, Gold nanoparticle enrichment method for identifying S-nitrosylation and S-glutathionylation sites in proteins, J. Am. Chem. Soc., 132, 11392, 10.1021/ja103591v
Engholm-Keller, 2012, TiSH – a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC, J. Proteom., 75, 5749, 10.1016/j.jprot.2012.08.007
Reddie, 2008, A chemical approach for detecting sulfenic acid-modified proteins in living cells, Mol. Biosyst., 4, 521, 10.1039/b719986d
Schwammle, 2014, Large scale analysis of co-existing post-translational modifications in histone tails reveals global fine structure of cross-talk, Mol. Cell. Proteom., 13, 1855, 10.1074/mcp.O113.036335
Thamsen, 2011, The redoxome: proteomic analysis of cellular redox networks, Curr. Opin. Chem. Biol., 15, 113, 10.1016/j.cbpa.2010.11.013
Wu, 2013, Functional proteomics approaches for the identification of transnitrosylase and denitrosylase targets, Methods, 62, 151, 10.1016/j.ymeth.2013.02.002
Chen, 2010, S-alkylating labeling strategy for site-specific identification of the s-nitrosoproteome, J. Proteome Res., 9, 6417, 10.1021/pr100680a
Ben-Lulu, 2014, A substrate trapping approach identifies proteins regulated by reversible S-nitrosylation, Mol. Cell. Proteom., 13, 2573, 10.1074/mcp.M114.038166
Wu, 2011, Distinction of thioredoxin transnitrosylation and denitrosylation target proteins by the ICAT quantitative approach, J. Proteom., 74, 2498, 10.1016/j.jprot.2011.06.001
Lee, 2014, Protein microarray characterization of the S-nitrosoproteome, Mol. Cell. Proteom., 13, 63, 10.1074/mcp.M113.032235
Lam, 2010, Comprehensive identification and modified-site mapping of S-nitrosylated targets in prostate epithelial cells, PLoS One, 5, e9075, 10.1371/journal.pone.0009075
Torta, 2012, Quantitative analysis of S-nitrosylated proteins, Methods Mol. Biol., 893, 405, 10.1007/978-1-61779-885-6_25
Fares, 2011, Proteomics investigation of endogenous S-nitrosylation in Arabidopsis, Biochem. Biophys. Res. Commun., 416, 331, 10.1016/j.bbrc.2011.11.036
Takanishi, 2011, A genetically encoded probe for the identification of proteins that form sulfenic acid in response to H2O2 in Saccharomyces cerevisiae, J. Proteome Res., 10, 2715, 10.1021/pr1009542