Differential Subordinations and Harmonic Means
Tóm tắt
The aim of a study of the presented paper is the differential subordination involving harmonic means of the expressions
$$p(z)$$
,
$$p(z) + zp'(z)$$
, and
$$p(z) + \frac{zp'(z)}{p(z)}$$
when
$$p$$
is an analytic function in the unit disk, such that
$$p(0)=1, p(z)\not \equiv 1$$
. Several applications in the geometric functions theory are given.
Tài liệu tham khảo
Ali R.M., Nagpal S., Ravichandran, V.: Second-order differential subordination for analytic functions with fixed initial coefficient. Bull. Malays. Math. Sci. Soc. (2) 34(3), 611–629 (2011)
Kanas S., Lecko A., Stankiewicz J.: Differential subordinations and geometric means. Compl. Var. 44. Theor. Appl. 28, 201–209 (1996)
Kanas S., Stankiewicz J.: Arithmetic means with reference to convexity conditions, Bull. Soc. Sci. Lett. Łódź 47, Ser. Rech. Deform. 24, 73–82 (1997)
Kanas, S., Lecko, A.: Univalence criteria connected with arithmetic and geometric means, II. Folia Sci. Univ. Tech. Resov. 20, 49–59 (1996)
Kanas S., Lecko A.: Univalence criteria connected with arithmetic and geometric means, II. In: Proceedings of the Second International Workshop of Transform Methods and Special Functions, Varna ’96, pp. 201–209. Bulgarian Academy of Sciences, Sofia (1996)
Kim, Y.Ch., Lecko, A.: On differential subordinations related to convex functions. J. Math. Anal. Appl. 235, 130–141 (1999)
Lecko A., Lecko M.: Differential subordinations of arithmetic and geometric means of some functionals related to a sector. Int. J. Math. Math. Sci. 2011, Article ID 205845, 19 (2011)
Lewandowski, Z., Miller, S.S., Złotkiewicz, E.: Generating functions for some classes of univalent functions. Proc. Am. Math. Soc. 56, 111–117 (1976)
Liu J.-L.: Certain sufficient conditions for strongly starlike functions associated with an integral operator. Bull. Malays. Math. Sci. Soc. (2) 34(1), 21–30 (2011)
Miller, S.S., Mocanu, P.T.: Differential Subordinations: Theory and Applications. Dekker, New York (2000)
Mocanu, P.T.: Une propriété de convexité dans la théorie de représentation conforme. Stud. Univ. Babes-Bolyai 34(11), 127–134 (1969)
Mondal S.R., Swaminathan A.: Geometric properties of generalized Bessel functions. Bull. Malays. Math. Sci. Soc. (2) 35(1), 179–194 (2012)
Omar, R., Halim S.A.: Multivalent harmonic functions defined by Dziok-Srivastava operator. Bull. Malays. Math. Sci. Soc. (2) 35(3), 601–610 (2012)
Răducanu, D., Nechita, V.O.: On \(\alpha \)- convex analytic functions defined by generalized Ruscheweyh operator. Stud. Univ. Babeş-Bolyai 53, 109–118 (2008)
Ruscheweyh, S.: New criteria for univalent functions. Proc. Am. Math. Soc. 49, 109–115 (1975)
Ali, R.M., Ravichandran, V.: Classes of meromorphic \(\alpha \)- convex functions. Taiwan. J. Math. 14, 1479–1490 (2010)
Supramaniam, S., Ali R.M., Lee S.K., Ravichandran, V.: Convolution and differential subordination for multivalent functions. Bull. Malays. Math. Sci. Soc. (2) 32(3), 351–360 (2009)
Sălăgean, G.: Subclasses of Univalent Functions, Lecture Notes in Math, vol. 1013. Springer, Berlin (1983)