Differential Subordinations and Harmonic Means

Stanisława Kanas1, Andreea-Elena Tudor2
1University of Rzeszow, Rzeszow, Poland
2Babeş-Bolyai University, Cluj-Napoca, Romania

Tóm tắt

The aim of a study of the presented paper is the differential subordination involving harmonic means of the expressions $$p(z)$$ , $$p(z) + zp'(z)$$ , and $$p(z) + \frac{zp'(z)}{p(z)}$$ when $$p$$ is an analytic function in the unit disk, such that $$p(0)=1, p(z)\not \equiv 1$$ . Several applications in the geometric functions theory are given.

Tài liệu tham khảo

Ali R.M., Nagpal S., Ravichandran, V.: Second-order differential subordination for analytic functions with fixed initial coefficient. Bull. Malays. Math. Sci. Soc. (2) 34(3), 611–629 (2011) Kanas S., Lecko A., Stankiewicz J.: Differential subordinations and geometric means. Compl. Var. 44. Theor. Appl. 28, 201–209 (1996) Kanas S., Stankiewicz J.: Arithmetic means with reference to convexity conditions, Bull. Soc. Sci. Lett. Łódź 47, Ser. Rech. Deform. 24, 73–82 (1997) Kanas, S., Lecko, A.: Univalence criteria connected with arithmetic and geometric means, II. Folia Sci. Univ. Tech. Resov. 20, 49–59 (1996) Kanas S., Lecko A.: Univalence criteria connected with arithmetic and geometric means, II. In: Proceedings of the Second International Workshop of Transform Methods and Special Functions, Varna ’96, pp. 201–209. Bulgarian Academy of Sciences, Sofia (1996) Kim, Y.Ch., Lecko, A.: On differential subordinations related to convex functions. J. Math. Anal. Appl. 235, 130–141 (1999) Lecko A., Lecko M.: Differential subordinations of arithmetic and geometric means of some functionals related to a sector. Int. J. Math. Math. Sci. 2011, Article ID 205845, 19 (2011) Lewandowski, Z., Miller, S.S., Złotkiewicz, E.: Generating functions for some classes of univalent functions. Proc. Am. Math. Soc. 56, 111–117 (1976) Liu J.-L.: Certain sufficient conditions for strongly starlike functions associated with an integral operator. Bull. Malays. Math. Sci. Soc. (2) 34(1), 21–30 (2011) Miller, S.S., Mocanu, P.T.: Differential Subordinations: Theory and Applications. Dekker, New York (2000) Mocanu, P.T.: Une propriété de convexité dans la théorie de représentation conforme. Stud. Univ. Babes-Bolyai 34(11), 127–134 (1969) Mondal S.R., Swaminathan A.: Geometric properties of generalized Bessel functions. Bull. Malays. Math. Sci. Soc. (2) 35(1), 179–194 (2012) Omar, R., Halim S.A.: Multivalent harmonic functions defined by Dziok-Srivastava operator. Bull. Malays. Math. Sci. Soc. (2) 35(3), 601–610 (2012) Răducanu, D., Nechita, V.O.: On \(\alpha \)- convex analytic functions defined by generalized Ruscheweyh operator. Stud. Univ. Babeş-Bolyai 53, 109–118 (2008) Ruscheweyh, S.: New criteria for univalent functions. Proc. Am. Math. Soc. 49, 109–115 (1975) Ali, R.M., Ravichandran, V.: Classes of meromorphic \(\alpha \)- convex functions. Taiwan. J. Math. 14, 1479–1490 (2010) Supramaniam, S., Ali R.M., Lee S.K., Ravichandran, V.: Convolution and differential subordination for multivalent functions. Bull. Malays. Math. Sci. Soc. (2) 32(3), 351–360 (2009) Sălăgean, G.: Subclasses of Univalent Functions, Lecture Notes in Math, vol. 1013. Springer, Berlin (1983)