Biểu hiện khác biệt đáp ứng với căng thẳng sinh học và phi sinh học từ ba glutaredoxin khoai tây được kích thích trong quá trình vỏ hóa

Journal of Plant Biology - Tập 50 - Trang 663-670 - 2007
Won-Jin Kang1, Hyun-Soon Kim1, Youn-Il Park2, Hyouk Joung1, Jae-Heung Jeon1
1Plant Genome Research Center, KRIBB, Daeieon, Korea
2School of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea

Tóm tắt

Để xác định sự biểu hiện đặc hiệu mô của chúng, ba gen GRX đã được phân lập từ các EST của thư viện cDNA "6 giờ sau khi vỏ hóa" cho Solanum tuberosum L. giống Desiree. Các bản sao của một loại GRX CCxC/S, StGRX1, tích lũy với mức độ cao hơn trong giai đoạn sinh trưởng sinh dưỡng ở lá, thân và rễ. Ngược lại, các bản sao của một loại GRX CxxC/S, StGRX2, tích lũy ở các mô sinh sản, chẳng hạn như hoa và củ. Sự biểu hiện khác biệt của ba gen StGRX khoai tây này cho thấy vai trò sinh lý đặc biệt và duy nhất trong quá trình phát triển của cây và đáp ứng với các tín hiệu môi trường. Do đó, chúng tôi đề xuất rằng StGRX1 là một gen housekeeping, hoạt động trong việc phòng thủ nhanh chóng chống lại các loại căng thẳng sinh học và phi sinh học khác nhau, trong khi StGRX2 và StGRX3 được biểu hiện một cách chọn lọc trong suốt quá trình phát triển và đáp ứng với các tín hiệu nội bộ và bên ngoài.

Từ khóa

#GRX #glutaredoxin #Solanum tuberosum #biểu hiện gen #căng thẳng sinh học #căng thẳng phi sinh học #vỏ hóa

Tài liệu tham khảo

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Capped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res25: 3389–3402 Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a system signal network in the establishment of plant immunity. Cell92: 773–784 Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current Protocols in Molecular Biology. John Wiley and Sons, New York, Greene Publishing Associates and Wiley-Interscience Balachandran S, Xiang Y, Schobert C, Thompson GA, Lucas WJ (1997) Phloem sap proteins fromCucurbita maxima andRicinus communis have the capacity to traffic cell to cell through plasmodesmata. Proc Natl Acad Sci USA94: 14150–14155 Beer SM, Taylor ER, Brown SE, Dahm CC, Costa NJ, Runswick MJ, Murphy MP (2004) Clutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: Implications for mitochondrial redox regulation and antioxidant defense. J Biol Chem279: 47939–47951 Bernards MA (2002) Demystifying suberin. Can J Bot80: 227–240 Bernards MA, Lewis NG (1998) The macromolecular aromatic domain in suberized tissue: A changing paradigm. Phytochemistry47: 915–933 Bernards MA, Razem FA (2001) The poly(phenolic) domain of potato suberin: A non lignin cell wall bio-polymer. Phytochemistry57: 1115–1122 Cheng NH, Liu JZ, Brock A, Nelson RS, Hirschi KD (2006) AtGRXcp, anArabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage. J Biol Chem281: 26280–26288 Dangl JL, Jones J (2001) Plant pathogens and integrated defence responses to infection. Nature411: 826–833 Doke N (1975) Prevention of the hypersensitive reaction of potato cells to infection with an incompatible racePhytophthora infestans by constituents of the zoospores. Physiol Plant Path7: 1–7 Fernandes AP, Holmgren A (2004) Glutaredoxins: Glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antiox Redox Signal6: 63–74 Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem264: 13963–13966 Jacob C, Giles GI, Giles NM, Sies H (2003) Sulfur and selenium: The role of oxidation state in protein structure and function. Angewandte Chemie Intl Ed42: 4742–4758 Jeon JH, Joung H, Park SW, Kim HS, Byun SM (1992) Regulation of in vitro tuberization of potato(Solarium tuberosum L.) by plant growth regulators. Kor J Plant Tissue Cult19: 67–73 Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol126: 1055–1060 Kim MS, Kim HS, Kim YS, Baek KH, Oh HW, Hahn KW, Bae RN, Lee IJ, Joung H, Jeon JH (2007) Superoxide anion regulates plant growth and tuber development of potato. Plant Cell Rep26: 1717–1725 Kolattukudy R Agrawal V (1974) Structure and composition of aliphatic constituents of potato tuber skin (suberin). Lipids9: 682–691 Lemaire SD (2004) The glutaredoxin family in oxygenic photosynthetic organisms. Photosynth Res79: 305–318 Levine A, Tenhaken R, Dixon RA, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive response. Cell79: 583–593 Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell15: 165–178 McAinsh MR, Clayton H, Mansfield TA, Hetherington AM (1996) Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiol111: 1031–1042 Minakuchi K, Yabushita T, Masumura T, Ichihara K, Tanaka K (1994) Cloning and sequence analysis of a cDNA encoding rice glutaredoxin. FEBS Lett337: 157–160 Nikkola M, Gleason FK, Saarinen M, Joelson T, Bjornberg O, Eklund H (1991) A putative glutathione-binding site in T4 glutaredoxin investigated by site-directed mutagenesis. J Biol Chem266: 16105–16112 Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell6: 65–74 Razem FA, Bernards MA (2003) Reactive oxygen species production in association with suberization: Evidence for an NADPH-dependent oxidase. J Exp Bot54: 935–941 Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol141: 357–366 Richberg MH, Aviv DH, Dangl JL (1998) Dead cells do tell tales. Curr Opin Plant Biol1: 480–485 Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. Plant Mol Biol Man A6: 1–10 Rouhier N, Gelhaye E, Sautiere PE, Brun A, Laurent P, Tagu D, Gerard J, de Fay E, Meyer Y, Jacquot JP (2001) Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor. Plant Physiol127: 1299–1309 Rouhier N, Gelhaye E, Jacquot JP (2002) Exploring the active site of plant glutaredoxin by site-directed mutagenesis. FEBS Lett511: 145–149 Rouhier N, Gelhaye E, Jacquot JP (2004) Plant glutaredoxins: Still mysterious reducing systems. Cell Mol Life Sci61: 1266–1277 Rouhier N, Villarejo A, Srivastava M, Gelhaye E, Keech O, Droux M, Finkemeier I, Samuelsson G, Dietz KJ, Jacquot JP, Wingsle G (2005) Identification of plant glutaredoxin targets. Antiox Redox Signal7: 919–929 Song YJ, Joo JH, Ryu HY, Lee JS, Bae YS, Nam KH (2007) Reactive oxygen species mediate IAA-induced ethylene production in mungbean(Vigna radiata L.) hypocotyls. J Plant Biol50: 18–23 Stark R, Garbow J (1992) Nuclear magnetic resonance studies of plant polyester dynamics. 2. Suberized potato cell wall. Macromolecules25: 149–154 Szederkenyi J, Komor E, Schobert C (1997) Cloning of the cDNA for glutaredoxin, an abundant sieve-tube exudate protein fromRicinus commuais L. and characterisation of the glutathione-dependent thiol-reduction system in sieve tubes. Planta202: 349–356 Xing S, Rosso MG, Zachgo S (2005) ROXY1, a member of the plant glutaredoxin family, is required for petal development inArabidopsis thaliana. Development132: 1555–1565 Zhu C, Gan L, Shen Z, Xia K (2006) Interactions between jasmonates and ethylene in the regulation of root hair development inArabidopsis. J Exp Bot57: 1299–1308 Zimmermann P, Zentgraf U (2005) The correlation between oxidative stress and leaf senescence during plant development. Cell Mol Biol Lett10: 515–534