Kích hoạt khác biệt của gia đình kinase protein liên quan đến sucrose Nonfermenting1 tại gạo bởi áp lực căng thẳng thẩm thấu cao và axit abscisic[W]

Plant Cell - Tập 16 Số 5 - Trang 1163-1177 - 2004
Yuhko Kobayashi1, Shuhei Yamamoto1, Hiroyuki Minami1, Yasuaki Kagaya2, Tsukaho Hattori1
1Bioscience and Biotechnology Center, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
2Life Science Research Center, Mie University, 1515 Kamihama-cho, Tsu 514-8507, Japan

Tóm tắt

Thông tin tóm tắt

Cho đến nay, một số lượng lớn các chuỗi protein kinase thuộc gia đình protein kinase liên quan đến sucrose nonfermenting1 (SnRK2) đã được tìm thấy trong cơ sở dữ liệu. Tuy nhiên, chỉ có một số lượng giới hạn các thành viên trong gia đình đã được mô tả đặc điểm và gắn liền với tín hiệu axit abscisic (ABA) và căng thẳng thẩm thấu cao. Chúng tôi đã xác định được 10 protein kinase SnRK2 mã hóa bởi bộ gen của gạo (Oryza sativa). Mỗi thành viên trong số 10 thành viên này được biểu hiện trong tế bào chất của tế bào nuôi cấy và quy định của chúng đã được phân tích. Tại đây, chúng tôi chứng minh rằng tất cả các thành viên trong gia đình đều được kích hoạt bởi căng thẳng thẩm thấu cao và ba trong số đó cũng được kích hoạt bởi ABA. Đáng ngạc nhiên là không có thành viên nào chỉ được kích hoạt bởi ABA. Việc kích hoạt được tìm thấy là thông qua quá trình phosphoryl hóa. Bên cạnh sự phân biệt chức năng liên quan đến quy định ABA, sự phụ thuộc vào căng thẳng thẩm thấu mạnh cũng khác nhau giữa các thành viên. Chúng tôi cho thấy rằng phần đuôi C tương đối khác biệt là nguyên nhân chính cho sự phân biệt chức năng này, mặc dù phần kinase cũng đóng góp cho những khác biệt này. Kết quả này chỉ ra rằng gia đình protein kinase SnRK2 đã tiến hóa đặc biệt cho tín hiệu căng thẳng thẩm thấu cao và rằng các thành viên cá nhân đã có được những tính chất điều tiết đặc biệt, bao gồm cả phản ứng ABA bằng cách điều chỉnh phần đuôi C.

Từ khóa


Tài liệu tham khảo

Albrecht, V., Ritz, O., Linder, S., Harter, K., and Kudla, J. (2001). The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J.  20  ,  1051–1063.

Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez, L., Boller, T., Ausubel, F.M., and Sheen, J. (2002). MAP kinase signaling cascade in Arabidopsis innate immunity. Nature  415  ,  977–983.

Assmann, S.M., Snyder, J.A., and Lee, Y.-R.J. (2000). ABA-deficient (aba1) and ABA-insensitive (abi1–1, abi2–1) mutants of Arabidopsis have a wild-type stomatal response to humidity. Plant Cell Environ.  23  ,  387–395.

Bostock, R.M., and Quatrano, R.S. (1992). Regulation of Em gene expression in rice, interaction between osmotic stress and abscisic acid. Plant Physiol.  98  ,  1356–1363.

Bray, E.A. (1997). Plant responses to water deficit. Trends Plant Sci.  2  ,  48–54.

Cheong, Y.H., Kim, K.N., Pandey, G.K., Gupta, R., Grant, J.J., and Luan, S. (2003). CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell  15  ,  1833–1845.

Delauney, A., and Verma, D.P.S. (1993). Proline biosynthesis and osmoregulation in plants. Plant J.  25  ,  215–223.

Desikan, R., Hancock, J.T., Ichimura, K., Shinozaki, K., and Neill, S.J. (2001). Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol.  126  ,  1579–1587.

DeWald, D.B., Torabinejad, J., Jones, C.A., Shope, J.C., Cangelosi, A.R., Thompson, J.E., Prestwich, G.D., and Hama, H. (2001). Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol.  126  ,  759–769.

Droillard, M.J., Boudsocq, M., Barbier-Brygoo, H., and Lauriere, C. (2002). Different protein kinase families are activated by osmotic stresses in Arabidopsis thaliana cell suspensions. Involvement of the MAP kinases AtMPK3 and AtMPK6. FEBS Lett.  527  ,  43–50.

Droillard, M.J., Thibivilliers, S., Cazale, A.C., Barbier-Brygoo, H., and Lauriere, C. (2000). Protein kinases induced by osmotic stresses and elicitor molecules in tobacco cell suspensions: Two crossroad MAP kinases and one osmoregulation-specific protein kinase. FEBS Lett.  474  ,  217–222.

Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution  39  ,  783–791.

Gomez-Cadenas, A., Verhey, S.D., Holappa, L.D., Shen, Q., Ho, T.H., and Walker-Simmons, M.K. (1999). An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers. Proc. Natl. Acad. Sci. USA  96  ,  1767–1772.

Gomez-Cadenas, A., Zentella, R., Walker-Simmons, M.K., and Ho, T.H. (2001). Gibberellin/abscisic acid antagonism in barley aleurone cells: Site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell  13  ,  667–679.

Gong, D., Guo, Y., Jagendorf, A.T., and Zhu, J.K. (2002). Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance. Plant Physiol.  130  ,  256–264.

Guo, Y., Halfter, U., Ishitani, M., and Zhu, J.K. (2001). Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell  13  ,  1383–1400.

Guo, Y., Xiong, L., Song, C.P., Gong, D., Halfter, U., and Zhu, J.K. (2002). A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev. Cell  3  ,  233–244.

Halford, N.G., and Hardie, D.G. (1998). SNF1-related protein kinases: Global regulators of carbon metabolism? Plant Mol. Biol.  37  ,  735–748.

Hotta, H., Aoki, N., Matsuda, T., and Adachi, T. (1998). Molecular analysis of a novel protein kinase in maturing rice seed. Gene  213  ,  47–54.

Hoyos, M.E., and Zhang, S. (2000). Calcium-independent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyperosmotic stress. Plant Physiol.  122  ,  1355–1363.

Hrabak, E.M., Chan, C.W.M., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N., Kudla, J., Luan, S., Nimmo, H.G., Sussman, M.R., Thomas, M., Walker-Simmons, K., et al. (2003). The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol.  132  ,  666–680.

Ichimura, K., Mizoguchi, T., Yoshida, R., Yuasa, T., and Shinozaki, K. (2000). Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J.  24  ,  655–665.

Johnson, R., Wagner, R., Verhey, S.D., and Walker-Simmons, M.K. (2002). The ABA-responsive kinase PKABA1 interacts with a seed-specific ABA response element binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol.  130  ,  837–846.

Kagaya, Y., Hobo, T., Murata, M., Ban, A., and Hattori, T. (2002). Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell  14  ,  3177–3189.

Kiegerl, S., Cardinale, F., Siligan, C., Gross, A., Baudouin, E., Liwosz, A., Eklof, S., Till, S., Bogre, L., Hirt, H., and Meskiene, I. (2000). SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell  12  ,  2247–2258.

Kim, K.-N., Cheong, Y.H., Grant, J.J., Pandey, G.K., and Luan, S. (2003). CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell  15  ,  411–423.

Kim, K.-N., Cheong, Y.H., Gupta, R., and Luan, S. (2000). Interaction specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases. Plant Physiol.  124  ,  1844–1853.

Knight, H. (2000). Calcium signaling during abiotic stress in plants. Int. Rev. Cytol.  195  ,  269–325.

Kovtun, Y., Chiu, W.L., Tena, G., and Sheen, J. (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA  97  ,  2940–2945.

Kyozuka, J., and Shimamoto, K. (1991). Transformation and regeneration of rice protoplasts. In Plant Tissue Culture Manual, B1, K. Lindsey, ed (Dordrecht, The Netherlands: Kluwer Academic Publishers), pp. 1–16.

Li, J., Wang, X.Q., Watson, M.B., and Assmann, S.M. (2000). Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science  287  ,  300–303.

Liu, J., Ishitani, M., Halfter, U., Kim, C.S., and Zhu, J.K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Plant Cell  12  ,  1667–1678.

Liu, J., and Zhu, J.K. (1998). A calcium sensor homolog required for plant salt tolerance. Science  280  ,  1943–1945.

Luan, S., Kudla, J., Rodriguez-Concepcion, M., Yalovsky, S., and Gruissem, W. (2002). Calmodulins and calcineurin B-like proteins: Calcium sensors for specific signal response coupling in plants. Plant Cell  14 (suppl.), S389–S400.

Maeda, T., Wurgler-Murphy, S.M., and Saito, H. (1994). A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature  369  ,  242–245.

Mikolajczyk, M., Olubunmi, S.A., Muszynska, G., Klessig, D.F., and Dobrowolska, G. (2000). Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell  12  ,  165–178.

Monks, D.E., Aghoram, K., Courtney, P.D., DeWald, D.B., and Dewey, R.E. (2001). Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell  13  ,  1205–1219.

Munnik, T., Irvine, R.F., and Musgrave, A. (1998). Phospholipid signaling in plants. Biochim. Biophys. Acta  1389  ,  222–272.

Munnik, T., Ligterink, W., Meskiene, I., Calderini, O., Beyerly, J., Musgrave, A., and Hirt, H. (1999). Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant J.  20  ,  381–388.

Munnik, T., Meijer, H.J.G., ter Riet, B., Frank, W., Bartels, D., and Musgrave, A. (2000). Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J.  22  ,  147–154.

Mustilli, A.-C., Merlot, S., Vavasseur, A., Fenzi, F., and Giraudat, J. (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell  14  ,  3089–3099.

Nuhse, T.S., Peck, S.C., Hirt, H., and Boller, T. (2000). Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK6. J. Biol. Chem.  275  ,  7521–7526.

Oono, Y., Seki, M., Nanjo, T., Narusaka, M., Fujita, M., Satoh, R., Satou, M., Sakurai, T., Ishida, J., Akiyama, K., Iida, K., Maruyama, K., et al. (2003). Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J.  34  ,  868–887.

Page, R.D.M. (1996). TREEVIEW: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci.  12  ,  357–358.

Pical, C., Westergren, T., Dove, S.K., Larsson, C., and Sommarin, M. (1999). Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells. J. Biol. Chem.  274  ,  38232–38240.

Qiu, Q.S., Guo, Y., Dietrich, M.A., Schumaker, K.S., and Zhu, J.K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc. Natl. Acad. Sci. USA  99  ,  8436–8441.

Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., and Izui, K. (2000). Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J.  23  ,  319–327.

Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol.  4  ,  406–425.

Sheen, J. (1996). Ca2+-dependent protein kinases and stress signal transduction in plants. Science  274  ,  1900–1902.

Shen, Q., Gomez-Cadenas, A., Zhang, P., Walker-Simmons, M.K., Sheen, J., and Ho, T.H. (2001). Dissection of abscisic acid signal transduction pathways in barley aleurone layers. Plant Mol. Biol.  47  ,  437–448.

Shi, J., Kim, K.-N., Ritz, O., Albrecht, V., Gupta, R., Harter, K., Luan, S., and Kudla, J. (1999). Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. Plant Cell  11  ,  2393–2405.

Shinozaki, K., and Yamaguchi-Shinozaki, K. (1996). Molecular responses to drought and cold stress. Curr. Opin. Biotechnol.  7  ,  161–167.

Shinozaki, K., and Yamaguchi-Shinozaki, K. (2000). Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol.  3  ,  217–223.

Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. (1997). The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res.  25  ,  4876–4882.

Urao, T., Katagiri, T., Mizoguchi, T., Yamaguchi-Shinozaki, K., Hayashida, N., and Shinozaki, K. (1994). Two genes that encode Ca2+-dependent protein kinases are induced by drought and high salt stresses in Arabidopsis thaliana. Mol. Gen. Genet.  224  ,  331–340.

Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, B., Hirayama, T., and Shinozaki, K. (1999). A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell  11  ,  1743–1754.

Wadsworth, G.J., Redinbaugh, M.G., and Scandalios, J.G. (1988). A procedure for the small-scale isolation of plant RNA suitable for RNA blot analysis. Anal. Biochem.  172  ,  279–283.

Wang, X. (1999). The role of phospholipase D in signaling cascades. Plant Physiol.  120  ,  645–651.

Xiong, L., Schumaker, K.S., and Zhu, J.K. (2002). Cell signaling during cold, drought, and salt stress. Plant Cell  14S  ,  165–183.

Xiong, L., and Zhu, J.-K. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ.  25  ,  131–139.

Yang, K.Y., Liu, Y., and Zhang, S. (2001). Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl. Acad. Sci. USA  98  ,  741–746.

Yoshida, R., Hobo, T., Ichimura, K., Mizoguchi, T., Takahashi, F., Alonso, J., Ecker, J.R., and Shinozaki, K. (2002). ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol.  43  ,  1473–1483.

Yuasa, T., Ichimura, K., Mizoguchi, T., and Shinozaki, K. (2001). Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol.  42  ,  1012–1016.

Zeevaart, J.A.D. (1999). Abscisic acid metabolism and its regulation. In Biochemistry and Molecular Biology of Plant Hormones, P.J.J. Hooykaas, M.A. Hall, and K.R. Libbenga, eds (Amsterdam, The Netherlands: Elsevier Science), pp. 189–207.

Zhang, S., and Klessig, D.F. (1998). The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proc. Natl. Acad. Sci. USA  95  ,  7225–7230.

Zhang, S., and Klessig, D.F. (2001). MAPK cascades in plant defense signaling. Trends Plant Sci.  6  ,  520–527.

Zhu, J.-K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol.  53  ,  247–273.