Different radial basis functions and their applicability for regional gravity field representation on the sphere
Tóm tắt
Từ khóa
Tài liệu tham khảo
Antoni, M., Keller, W., Weigelt, M.: Representation of regional gravity fields by radial base functions. In: Observing our Changing Earth: Proceedings of the 2007 IAG General Assembly (International Association of Geodesy Symposia), vol. 133, pp. 293–299 (2009)
Chambodut, A., Panet, I., Mandea, M., Diament, M., Holschneider, M., Jamet, O.: Wavelet frames: an alternative to spherical harmonic representation of potential fields. Geophys. J. Int. 163(3), 875–899 (2005). doi: 10.1111/j.1365-246X.2005.02754.x
ESA: Gravity field and steady-state ocean circulation mission. Reports for mission selection: the four candidate earth explorer core missions, ESA SP-1233(1) (1999)
Fehlinger, T.: Multiscale formulations for the disturbing potential and the deflections of the vertical in locally reflected physical geodesy. Dissertation, University of Kaiserslautern, Department of Mathematics, Verlag Dr. Hut. ISBN 978-3-86853-213-5 (2009)
Fehlinger, T., Freeden, W., Gramsch, S., Mayer, C., Michel, D., Schreiner, M.: Local modelling of sea surface topography from (geostrophic) ocean flow. ZAMM 87(11–12), 775–791 (2007)
Fischer, D.: Sparse regularization of a joint inversion of gravitational data and normal mode anomalies. University of Siegen, Dissertation (2011)
Freeden, W., Michel, V.: Multiscale Potential Theory With Applications to Geoscience. Springer Basel AG (2004). ISBN 081764105X
Freeden, W., Schreiner, M.: Spaceborne gravitational field determination by means of locally supported wavelets. J. Geod. 79, 431–446 (2005). doi: 10.1007/s00190-005-0482-x
Freeden, W., Schreiner, M.: Local multiscale modelling of geoid undulations from deflections of the vertical. J. Geod. 79, 641–651 (2006)
Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere With Applications to Geoscience. Oxford Science Publications (1998). ISBN 019853682
Freeden, W., Fehlinger, T., Klug, M., Mathar, D., Wolf, K.: Classical globally reflected gravity field determination in modern locally oriented multiscale framework. J. Geod. 83, 1171–1191 (2009). doi: 10.1007/s00190-009-0335-0
Gerhards, C.: Spherical multiscale methods in terms of locally supported wavelets: theory and application to geomagnetic modeling. University of Kaiserslautern, Department of Mathematics, Dissertation (2012)
Hofmann-Wellenhof, B., Moritz, H.: Physical Geodesy. Springer Wien, New York (2005)
Holschneider, M., Chambodut, A., Mandea, M.: From global to regional analysis of the magnetic field on the sphere using wavelet frames. Phys. Earth Planet. Inter. 135(2–3), 107–124 (2003). doi: 10.1016/S0031-9201(02)00210-8
Klees, R., Tenzer, R., Prutkin, I., Wittwer, T.: A data-driven approach to local gravity field modelling using spherical radial basis functions. J. Geod. 82(8) (2008). doi: 10.1007/s00190-007-0196-3
Koch, K.R., Kusche, J.: Regularization of geopotential determination from satellite data by variance components. J. Geod. 76, 259–268 (2002). doi: 10.1007/s00190-002-0245-x
Moritz, H.: Advanced Physical Geodesy, 2nd edn. Wichmann Verlag, Karlsruhe (1989)
Panet, I., Jamet, O., Diament, M., Chambodut, A.: Modelling the earth’s gravity field using wavelet frames. In: Jekeli, C., Bastos, L., Fernandes, J., Sansò, F. (eds.) Gravity, Geoid and Space Missions, International Association of Geodesy Symposia, vol. 129. Springer, Berlin, pp. 48–53 (2005)
Panet, I., Kuroishi, Y., Holschneider, M.: Wavelet modelling of the gravity field by domain decomposition methods: an example over Japan. Geophys. J. Int. 184(1), 203–219 (2010). doi: 10.1111/j.1365-246X.2010.04840.x
Press, W.H., Flanner, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge (2007)
Schmidt, M., Fengler, M., Mayer-Gürr, T., Eicker, A., Kusche, J., Sánchez, L., Han, S.C.: Regional gravity modeling in terms of spherical base functions. J. Geod. 81(1), 17–38 (2007). doi: 10.1007/s00190-006-0101-5
Tenzer, R., Klees, R.: The choice of the spherical radial basis funcitons in local gravity field modeling. Stud. Geophys. Geod. 1–18 (2007)
Wolf, K.: Multiscale modeling of classical boundary value problems in physical geodesy by locally supported wavelets. Dissertation, University of Kaiserslautern, Department of Mathematics, Verlag Dr. Hut, ISBN 978-3-86853-249-4 (2009)