Different exercise protocols improve metabolic syndrome markers, tissue triglycerides content and antioxidant status in rats

Diabetology & Metabolic Syndrome - Tập 3 - Trang 1-8 - 2011
José D Botezelli1, Lucieli T Cambri1, Ana C Ghezzi1, Rodrigo A Dalia1, Pedro P M Scariot1, Carla Ribeiro1, Fabrício A Voltarelli2, Maria AR Mello1
1Physical Education Department, São Paulo State University - UNESP, Rio Claro, Brazil
2Physical Education Department, Mato Grosso Federal University-UFMT, Cuiabá, Brazil

Tóm tắt

An increase in the prevalence of obesity entails great expenditure for governments. Physical exercise is a powerful tool in the combat against obesity and obesity-associated diseases. This study sought to determine the effect of three different exercise protocols on metabolic syndrome and lipid peroxidation markers and the activity of antioxidant enzymes in adult Wistar rats (120 days old). Animals were randomly divided into four groups: the control (C) group was kept sedentary throughout the study; the aerobic group (A) swam1 h per day, 5 days per week, at 80% lactate threshold intensity; the strength group (S) performed strength training with four series of 10 jumps, 5 days per week; and the Concurrent group (AS) was trained using the aerobic protocol three days per week and the strength protocol two days per week. Groups A and S exhibited a reduction in body weight compared to group C. All exercised animals showed a reduction in triglyceride concentrations in fatty tissues and the liver. Exercised animals also exhibited a reduction in lipid peroxidation markers (TBARS) and an increase in serum superoxide dismutase activity. Animals in group A had increased levels of liver catalase and superoxide dismutase activities. We concluded that all physical activity protocols improved the antioxidant systems of the animals and decreased the storage of triglycerides in the investigated tissues.

Tài liệu tham khảo

Schulz L, Schoeller DA: A compilation of total daily energy expenditures and body weights in healthy adults. The American Journal of Clinical Nutrition. 1994, 60: 676-681. Hanley AJG, Williams K, Festa A, Wagenknetcht LE, D'Agostino JR, Haffner SM: Markers and development of the metabolic syndrome. The insulin resistance atherosclerosis study. Diabetes. 2005, 54 (suppl 1): 3140-7. Hamond RA, Levine R: The economic impact of obesity in the United States. Diabetes Metab Syndr Obes. 2010, 3: 285-295. Ervin RB: Prevalence of Metabolic Syndrome Among Adults 20 Years of Age and Over, by Sex, Age, Race and Ethnicity, and Body Mass Index: United States. National Health Statistics Reports. 2009, 13: 1-8. Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R: Metabolic syndrome: A Comprehensive Perspective Based on Interactions between Obesity, Diabetes and Inflammation. Circulation. 2005, 111: 1448-1454. 10.1161/01.CIR.0000158483.13093.9D. Botezelli JD, Moura RF, Dalia RA, Moura LP, Cambri LT, Ghezzi AC, Voltarelli FA, Mello MAR: Exercise counteracts fatty liver disease in rats fed on fructose-rich diet. Lipids in health and disease. 2010, 9: 116-10.1186/1476-511X-9-116. Brooks N, Layne JE, Gordon PL, Roubenoff R, Nelson ME, Castaneda-Sceppa C: Strength training improves muscle quality and insulin sensitivity in Hispanic older adults with type 2 diabetes. Int J Med Sci. 2007, 4: 19-27. Perseghin G, Price TB, Petersen KF, Roden M, Cline GW, Gerow K, Rothmn DL, Shulman GI: Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. New EngJ Med. 1996, 335: 1357-1362. 10.1056/NEJM199610313351804. Ivy JL: Role of exercise training in the prevention and treatment of insulin resistance and non-insulin-dependent diabetes mellitus. SportsMed. 1997, 24: 321-36. Matthews JNS, Altman DG, Campbell MJ, Royston P: Analysis of serial measurements in medical research. BMJ. 1990, 230-250. Suppl 27 Rogatto GP, Luciano E: Influência do Treinamento Físico Intenso Sobre o Metabolismo de Proteínas. [Clinical Biochemistry Methods: Technical-interpretation]. Motriz. 2001, 7 (suppl 2): 75-82. Gobatto CA, Mello MAR, Sibuya CY, Azevedo JRM, dos Santos LA, Kokubun E: Maximal lactate steady state in rats submitted to swimming exercise. Comp Biochem Physiol A Mol Integr Physiol. 2001, 130 (suppl 1): 21-27. Tegtbur U, Busse MW, Braumann KL: Estimation of an individual equilibrium between lactate production and catabolism during exercise. Med Sci Sports Exercise. 1993, 25 (suppl 5): 620-627. Araujo GG, Papoti M, Manchado FB, Mello MAR, Gobatto CA: Protocols for hyperlactatemia induction in the lactate minimum test adapted to swimming rats. Comp Biochem Physiol A Mol IntegrPhysiol. 2007, 148 (suppl 4): 888-892. Engels RC, Jones JB: Causes and elimination of erratic blank in enzymatic metabolic assays involving the use of NAD in alkaline hydrazine buffers: improved conditions for assay of L-glutamate, L-lactate and other metabolites. Ann Biochem. 1978, 88: 475-484. 10.1016/0003-2697(78)90447-5. Voltarelli FA, Gobatto CA, Mello MAR: Determination of anaerobic threshold in rats using the lactate minimum test. Rev Bras Pesqui Med Biol. 2002, 35 (suppl 11): 1389-1394. Middleton JE: Experience with a glucose-oxidase method for estimating glucose in blood and C.S.F. British Medical Journal. 1959, 1 (suppl 5125): 824-826. Lundbaeck K: Intravenous glucose tolerance test as a tool indefinition and diagnosis of diabetes mellitus. BMJ. 1961, 2: 1507-1513. Nogueira DM, Strufaldi B, Hirata MH, Abdalla DSP, Hirata RDC: Métodos de Bioquímica Clínica: Técnico-interpretação. [Clinical Biochemistry Methods: Technical-interpretation]. São Paulo, Pancast. 1990 Aebi H: Catalase in vitro. MethodsEnzymol. 1984, 105: 121-126. Dögan P, Tanrikulu G, Soyuer Ü: Oxidative enzymes of polymorphonuclear leucocytes and plasma fibrinogen, ceruloplasmin, and cooper levels in Behcet's disease. ClinBiochem. 1994, 5: 413-418. Wasowicz W, Neve J, Perez A: Optimized steps in fluorimetric determination of thiobarbituric acid-reactive substances in serum. Importance of extraction pH and influence of sample preservation and storage. ClinChem. 1993, 39 (suppl 12): 2522-2526. Kim D, Subramanian SV, Gortmaker SL, Kawachi I: US state- and county-level social capital in relationship to obesity and physical inactivity: A multilevel, multivariable analysis. SocSciMed. 2006, 63 (suppl 4): 1045-1059. Botezelli JD, Moura RF, Rossi AC, Dalia RA, Cambri LT, Mello MAR: Consumo de frutose e exercício físico, impacto na síndrome metabólica.[Fructose consumption and physical exercise, impact on metabolic syndrome]. Motriz. 2010, 16 (1): 231-239. Poehlman ET, Danforth E: Endurance training increases metabolic rate and norepinephrine appearance rate in older individuals. Am J PhysiolEndocrinolMetab. 1991, 261: E233-E239. Billat VL, Sirvent PG, Koralsztein JP, Mercier J: The Concept of Maximal Lactate Steady State: A Bridge Between Biochemistry, Physiology and Sport Science. Sports Med. 2003, 33 (suppl 6): 407-426. McAardle WD, Katch FI, Katch VL: Fisiologia do exercício: energia, nutrição e desempenhohumano [Physiology of exercise: energy, nutrition and human performance]. Rio de Janeiro. Edited by: Guanabara Koogan. 1998, 4 Robatto GP, Luciano E: Effects of high intensity training on glucose metabolism. Brazilian Journal of Physical Activity and Health. 2001, 6 (suppl 2): 39-46. Young JC, Balon TW: Role of dihydropyridine sensitive calcium channel in glucose transport in skeletal muscle. Life Sci. 1997, 6 (suppl 3): 335-342. Martin WH, Dalsky GP, Hurley BF, Matthews DE, Bier DM, Hagberg JM, Rogers MA, King DS, Holloszy JO: Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am J Physiol. 1993, 265: E708-14. Botezelli JD, Dalia RA, Reis IGM, Barbieri RA, Rezente TM, Pelarigo JG, Codogno JT, Goncalves R, Mello MAR: Chronic consumption of fructose rich soft drinks alters tissue lipids of rats. Diabetology and Metabolic Syndrome. 2010, 2: 1-25. 10.1186/1758-5996-2-1. Dyck DJ, Bonen A: Muscle contraction increases palmitate esterification and oxidation and triacylglycerol oxidation. Am J Physiol. 1998, 275: E888-96. Behzad MK, Ghanbari-Niaki A, Safarzadeh-Golpordesari AR, Ebrahimi M, Rahbarizadeh F: Endurance training enhances ABCA1 expression is rat small intestine. Int J Endocrinol Metab. 2010, 8 (suppl4): 206-210. Kraus WE, Hourmard JA, Duscha BD, Knetzger KJ, Wharton MB, McCartney JS, Bales CW, Henes S, Samsa GP, Otvos , Kulkarni KR, Slentz CA: Effects of the amount and intensity of exercise on plasma lipoproteins. New Eng J Med. 2002, 347: 483-1492. Donnelly JE, Hill JO, Jacobsen DJ, Potteiger J, Sullivan DK, Johnson SL, Heelan K, Hise M, Fennessey PV, Sonko B, Sharp T, Jakicic JM, Blair SN, Tran ZV, Mayo M, Gibson C, Washburn RA: Effects of a 16-Month Randomized Controlled Exercise Trial on Body Weight and Composition in Young Overweight Men and Women. Arch Int Med. 2003, 163 (suppl 11): 1343-1350. Jakicic JM, Marcus BH, Gallagher KI, Napolitano M, Lang W: Effect of exercise duration and intensity on weight loss in overweight, sedentary women. JAMA. 2003, 290 (suppl 10): 1323-1330. Kraemer WJ, Volek JS, Clark KL, Gordon SE, Incledon T, Puhl SM, Triplett-McBride NT, McBride JM, Putukian M, Sebastianelli WJ: Physiological adaptations to a weight-loss dietary regimen and exercise programs in women. JApplPhysiol. 1997, 83 (suppl 1): 270-279. Girard A, Madani S, Boukortt F: Fructose-enriched diet modifies antioxidant status and lipid metabolism in spontaneous hypertensive rats. Nutrition. 2006, 22: 758-766. 10.1016/j.nut.2006.05.006. Allan G, Azhar S: High Dietary Fructose Induces a Hepatic Stress Response Resulting in Cholesterol and Lipid Dysregulation. Endocrinology. 2004, 145 (suppl 2): 548-555. Kakkar R, Mantha SV, Radhi J, Prasad K, Kalra J: Increased oxidative stress in rat liver and pancreas during progression of strepcototozocin-induced diabetes. Clin Sci. 1998, 94: 623-632. Lehninger AL, Nelson DL, Cox MM: Principles of Biochemistry. 1993, Worth Publishers, Inc., New York, 2 Franks PW: Obesity, inflammatory markers and cardiovascular disease: distinguishing causality from confounding. J Hum Hypertens. 2006, 20 (suppl 11): 837-840. KonKoh K, Han SH, Quon MJ: Inflammatory Markers and the Metabolic Syndrome: Insights From therapeutic interventions. J Am Coll Cardiol. 2005, 46: 1978-1985. 10.1016/j.jacc.2005.06.082. Dhalla NS, Temsah RM, Netticadan T: Role of Oxidative stress in Cardiovascular Diseases. J Hypertens. 2000, 18 (suppl 6): 655-673. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Goodyear LJ, Kraegen EW, White MF, Shilman GI: Free fatty acid-induced insulin resistance is associated with activation of proteinkinaseCthetaandalterationsintheinsulinsignalingcascade. Diabetes. 1999, 48 (suppl 6): 1270-1274. Varman TS, Liu ZX, Qu X, Elder BD, Bilz S, Belfroy D, Romanelli A, Shulman GI: Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004, 279: 32345-32353. 10.1074/jbc.M313478200.