Different dissecting orders of the pulmonary bronchus and vessels during right upper lobectomy are associated with surgical feasibility and postoperative recovery for lung cancer patients

Hao-Ran Zhai1,2, Xue-Ning Yang2, Qiang Nie2, Ri-Qiang Liao2, Song Dong2, Wei Li1,2, Ben-Yuan Jiang2, Jin-Ji Yang2, Qing Zhou2, Hai-Yan Tu2, Xu-Chao Zhang2, Yi-Long Wu1,2, Wen-Zhao Zhong2,1
1Graduate School, Southern Medical University, Guangzhou, P. R. China
2Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, P. R. China

Tóm tắt

Right upper lobectomy (RUL) for lung cancer with different dissecting orders involves the most variable anatomical structures, but no studies have analyzed its effects on postoperative recovery. This study compared the conventional surgical approach, VAB (dissecting pulmonary vessels first, followed by the bronchus), and the alternative surgical approach, aBVA (dissecting the posterior ascending arterial branch first, followed by the bronchus and vessels) on improving surgical feasibility and postoperative recovery for lung cancer patients. According to the surgical approach, consecutive lung cancer patients undergoing RUL were grouped into aBVA and VAB cohorts. Their clinical, pathologic, and perioperative characteristics were collected to compare perioperative outcomes. Three hundred one patients were selected (109 in the aBVA cohort and 192 in the VAB cohort). The mean operation time was shorter in the aBVA cohort than in the VAB cohort (164 vs. 221 min, P < 0.001), and less blood loss occurred in the aBVA cohort (92 vs. 141 mL, P < 0.001). The rate of conversion to thoracotomy was lower in the aBVA cohort than in the VAB cohort (0% vs. 11.5%, P < 0.001). The mean duration of postoperative chest drainage was shorter in the aBVA cohort than in the VAB cohort (3.6 vs. 4.5 days, P = 0.001). The rates of postoperative complications were comparable (P = 0.629). The median overall survival was not arrived in both cohorts (P > 0.05). The median disease-free survival was comparable for all patients in the two cohorts (not arrived vs. 41.97 months) and for patients with disease recurrences (13.25 vs. 9.44 months) (both P > 0.05). The recurrence models in two cohorts were also comparable for patients with local recurrences (6.4% vs. 7.8%), distant metastases (10.1% vs. 8.3%), and both (1.8% vs. 1.6%) (all P > 0.05). Dissecting the right upper bronchus before turning over the lobe repeatedly and dissecting veins via the aBVA approach during RUL would promote surgical feasibility and achieve comparable postoperative recovery for lung cancer patients.

Từ khóa


Tài liệu tham khảo

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. Chen W, Zheng R, Zeng H, Zhang S. The incidence and mortality of major cancers in China, 2012. Chin J Cancer. 2016;35(1):73. Gharagozloo F, Tempesta B, Margolis M, Alexander EP. Video-assisted thoracic surgery lobectomy for stage I lung cancer. Ann Thorac Surg. 2003;76(4):1009–14 (Discussion 1014–5). Muraoka M, Oka T, Akamine S, Tagawa T, Nakamura A, Hashizume S, et al. Video-assisted thoracic surgery lobectomy reduces the morbidity after surgery for stage I non-small cell lung cancer. Jpn J Thorac Cardiovasc Surg. 2006;54(2):49–55. Roviaro G, Varoli F, Vergani C, Nucca O, Maciocco M, Grignani F. Long-term survival after videothoracoscopic lobectomy for stage I lung cancer. Chest. 2004;126(3):725–32. Yang JJ, Wu YL. Insight into early-phase trials for lung cancer in the United States. Chin J Cancer. 2015;34(7):288–94. Gómez-Caro A, Calvo MJR, Lanzas JT, Chau R, Cascales P, Parrilla P. The approach of fused fissures with fissureless technique decreases the incidence of persistent air leak after lobectomy. Eur J Cardio Thorac Surg. 2007;31(2):203–8. Liu L, Che G, Pu Q, Ma L, Wu Y, Kan Q, et al. A new concept of endoscopic lung cancer resection: single-direction thoracoscopic lobectomy. Surg Oncol. 2010;19(2):e71–7. Nomori H, Ohtsuka T, Horio H, Naruke T, Suemasu K. Thoracoscopic lobectomy for lung cancer with a largely fused fissure. Chest. 2003;123(2):619–22. Kent M, Wang T, Whyte R, Curran T, Flores R, Gangadharan S. Open, video-assisted thoracic surgery, and robotic lobectomy: review of a national database. Ann Thorac Surg. 2014;97(1):236–42 (Discussion 242–4). Luo QQ, Lin H, Tan Q, Huang J, Xu L. Analysis of clinical application of thoracoscopic lobectomy for lung cancer. World J Surg Oncol. 2014;12(1):157. Sawada S, Komori E, Yamashita M. Evaluation of video-assisted thoracoscopic surgery lobectomy requiring emergency conversion to thoracotomy. Eur J Cardio Thorac Surg. 2009;36(3):487–90. Cao C, Zhu ZH, Yan TD, Wang Q, Jiang G, Liu L, et al. Video-assisted thoracic surgery versus open thoracotomy for non-small-cell lung cancer: a propensity score analysis based on a multi-institutional registry. Eur J Cardio Thorac Surg. 2013;44(5):849–54. Allen MS, Darling GE, Pechet TTV, Mitchell JD, Herndon JE, Landreneau RJ, et al. Morbidity and mortality of major pulmonary resections in patients with early-stage lung cancer: initial results of the randomized, prospective ACOSOG Z0030 trial. Ann Thorac Surg. 2006;81(3):1013–20. Hsu PK, Lin WC, Chang YC, Chan ML, Wang BY, Liu CY, et al. Multiinstitutional analysis of single-port video-assisted thoracoscopic anatomical resection for primary lung cancer. Ann Thorac Surg. 2015;99(5):1739–44. Gonzalez-Rivas D, Paradela M, Fernandez R, Delgado M, Fieira E, Mendez L, et al. Uniportal video-assisted thoracoscopic lobectomy: two years of experience. Ann Thorac Surg. 2013;95(2):426–32. Ng T, Ryder BA, Machan JT, Cioffi WG. Decreasing the incidence of prolonged air leak after right upper lobectomy with the anterior fissureless technique. J Thorac Cardiovasc Surg. 2010;139(4):1007–11. Yan TD. Surgical atlas of thoracoscopic lobectomy and segmentectomy. Ann Cardiothorac Surg. 2014;3(2):183–91. Sienel W, Seen-Hibler R, Mutschler W, Pantel K, Passlick B. Tumour cells in the tumour draining vein of patients with non-small cell lung cancer: detection rate and clinical significance. Eur J Cardiothorac Surg. 2003;23(4):451–6. Yamashita JI, Kurusu Y, Fujino N, Saisyoji T, Ogawa M. Detection of circulating tumor cells in patients with non-small cell lung cancer undergoing lobectomy by video-assisted thoracic surgery: a potential hazard for intraoperative hematogenous tumor cell dissemination. J Thorac Cardiovasc Surg. 2000;119(5):899–905. Kurusu Y, Yamashita J, Hayashi N, Mita S, Fujino N, Ogawa M. The sequence of vessel ligation affects tumor release into the circulation. J Thorac Cardiovasc Surg. 1998;116(1):107–13. Refaely Y, Sadetzki S, Chetrit A, Simansky DA, Paley M, Modan B, et al. The sequence of vessel interruption during lobectomy for non-small cell lung cancer: is it indeed important? J Thorac Cardiovasc Surg. 2003;125(6):1313–20. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JH, Beasley MB, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10(9):1243–60. Chansky K, Sculier JP, Crowley JJ, Giroux D, Van Meerbeeck J, Goldstraw P. The International Association for the study of lung cancer staging project: prognostic factors and pathologic TNM stage in surgically managed non-small cell lung cancer. J Thorac Oncol. 2009;4(7):792–801. Iida T, Shiba M, Yoshino I, Miyaoka E, Asamura H, Date H, et al. Surgical intervention for non-small-cell lung cancer patients with pleural carcinomatosis: results from the Japanese lung cancer registry in 2004. J Thorac Oncol. 2015;10(7):1076–82. Kara HV, Balderson SS, D’Amico TA. Modified uniportal video-assisted thoracoscopic lobectomy: Duke approach. Ann Thorac Surg. 2014;98(6):2239–41. Kurusu Y, Yamashita J, Hayashi N, Mita S, Fujino N, Ogawa M. The sequence of vessel ligation affects tumor release into the circulation. J Thorac Cardiovasc Surg. 1998;116(1):107–13. Kozak A, Alchimowicz J, Safranow K, Wojcik J, Kochanowski L, Kubisa B, et al. The impact of the sequence of pulmonary vessel ligation during anatomic resection for lung cancer on long-term survival—a prospective randomized trial. Adv Med Sci. 2013;58(1):156–63. Yan L, Xu L. Global efforts in conquering lung cancer in China. Chin J Cancer. 2015;34(7):320–2.