Các phương pháp khác nhau trong phân tích chuyển hóa thực vật khi phơi nhiễm với selenium: một đánh giá toàn diện

Springer Science and Business Media LLC - Tập 42 - Trang 1-20 - 2020
Kazimierz Wrobel1, Moises Guerrero Esperanza1, Eunice Yanez Barrientos1, Alma Rosa Corrales Escobosa1, Katarzyna Wrobel1
1Chemistry Department, University of Guanajuato, Guanajuato, Mexico

Tóm tắt

Nhiều lợi ích liên quan đến việc cung cấp selenium đầy đủ được ghi nhận trong tất cả các lĩnh vực của cuộc sống; đáng chú ý nhất là sự tham gia của selenium trong cơ chế chống oxy hóa, hoạt động phòng ngừa ung thư và giảm thiểu căng thẳng do kim loại nặng. Đối với thực vật bậc cao, cả tác động tích cực và độc hại đã được báo cáo, phụ thuộc vào loài sinh học, nồng độ selenium tổng thể và vào giống/phân bố của các dạng lý hóa của nó. Nhiều nghiên cứu sâu rộng về các con đường và tác động của selenium trong thực vật đã được thực hiện, cung cấp dữ liệu có liên quan cao cho sức khỏe con người và dinh dưỡng cũng như trong các lĩnh vực nông nghiệp, công nghệ sinh học và phục hồi sinh thái. Ảnh hưởng của selenium đã được quan sát trong tất cả các thành phần “omics”; trong số đó, chuyển hóa nên được chú ý đặc biệt vì sản phẩm của chuyển hóa thực vật phản ánh trực tiếp trạng thái thực tế của nó và chỉ ra kiểu hình phân tử. Cần nhấn mạnh rằng các chất chuyển hóa thực vật phát sinh từ việc phơi nhiễm selenium rất đáng quan tâm trong các ứng dụng lâm sàng, trong sản xuất thực phẩm chức năng và thực phẩm bổ sung dinh dưỡng. Trong bài đánh giá này, những tiến bộ gần đây trong các nghiên cứu chuyển hóa về selenium ở thực vật bậc cao được trình bày, chủ yếu tập trung vào phương pháp phân tích và tóm tắt ngắn gọn ý nghĩa sinh học của các kết quả đạt được. Phần đầu tiên trình bày các khung nghiên cứu chính liên quan đến thực vật phơi nhiễm selenium và giới thiệu các phương pháp chuyển hóa được sử dụng trong các nghiên cứu này. Quá trình hấp thu và biotransformation selenium được tóm tắt, nhấn mạnh đến sự phức tạp của các con đường sinh học và sự đa dạng lớn của các hợp chất chuyển hóa selenium; các sơ đồ phân tích dạng hóa được mô tả và đặt trong các phương pháp nhắm đến hoặc bán nhắm đến. Tiếp theo, phân tích chuyển hóa của thực vật bị ảnh hưởng bởi phơi nhiễm selenium được đề cập; sự chú ý cụ thể được dành cho các chất chuyển hóa liên quan đến phản ứng stress, và đến các sản phẩm của chuyển hóa sơ cấp và thứ cấp (các axit amin, các axit béo và các sản phẩm oxy hóa của chúng, các chất chống oxy hóa, glucosinolate, các hợp chất phenolic, vv). Cuối cùng, một vài ví dụ về phân tích chuyển hóa không nhắm đến được trình bày, làm nổi bật tác động đa dạng của selenium trong thực vật. Ở cuối, những kết luận ngắn gọn và triển vọng tương lai được đưa ra.

Từ khóa

#selenium #thực vật bậc cao #chuyển hóa #phân tích chuyển hóa #tác động sinh học

Tài liệu tham khảo

Aborode FA, Raab A, Foster S, Lombi E, Maher W, Krupp EM, Feldmann J (2015) Selenopeptides and elemental selenium in Thunbergia alata after exposure to selenite: quantification method for elemental selenium. Metallomics 7:1056–1066 Aureli F, Ouerdane L, Bierla K, Szpunar J, Prakash NT, Cubadda F (2012) Identification of selenosugars and other low-molecular weight selenium metabolites in high-selenium cereal crops. Metallomics 4:968–978 Avila WF, Yang Y, Faquin V, Ramos SJ, Guilherme LRG, Thannhauser TW, Li L (2014) Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts. Food Chem 165:578–586 Bachiega P, Salgado JM, de Carvalho JE, Ruiz ALT, Schwarz K, Tezotto T, Morzelle MC (2016) Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium. Food Chem 190:771–776 Bai X, Li Y, Liang X, Li H, Zhao J, Li YF, Gao Y (2019) Botanic metallomics of mercury and selenium: current understanding of mercury-selenium antagonism in plant with the traditional and advanced technology. Bull Environ Contam Toxicol 102:628–634 Balcaen L, Bolea-Fernandez E, Resano M, Vanhaecke F (2015) Inductively coupled plasma–tandem mass spectrometry (ICP-MS/MS): a powerful and universal tool for the interference-free determination of (ultra) trace elements–a tutorial review. Anal Chim Acta 894:7–19 Bañuelos GS, Arroyo I, Pickering IJ, Yang SI, Freeman JL (2015) Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem 166:603–608 Barickman TC, Kopsell DA, Sams CE (2013) Selenium influences glucosinolate and isothiocyanates and increases sulfur uptake in Arabidopsis thaliana and rapid-cycling Brassica oleracea. J Agric Food Chem 61:202–209 Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, Boughton BA, Dias DA (2018) Review of recent developments in GC–MS approaches to metabolomics-based research. Metabolomics 14:152 Bernat P, Gajewska E, Bernat T, Wielanek M (2014) Characterisation of the wheat phospholipid fraction in the presence of nickel and/or selenium. Plant Growth Regul 72:163–170 Bischoff KL (2016) Glucosinolates. In: Gupta RC (ed) Nutraceuticals. Academic Press, Cambridge, pp 551–554 Bodnar M, Szczyglowska M, Konieczka P, Namiesnik J (2016) Methods of selenium supplementation: bioavailability and determination of selenium compounds. Crit Rev Food Sci Nutr 56:36–55 Both EB, Shao S, Xiang J, Jókai Z, Yin H, Liu Y, Magyar A, Dernovics M (2018) Selenolanthionine is the major water-soluble selenium compound in the selenium tolerant plant Cardamine violifolia. Biochim Biophys Acta Gen Sub 1862:2354–2362 Caldana C, Degenkolbe T, Cuadros-Inostroza A, Klie S, Sulpice R, Leisse A, Steinhauser D, Fernie AR, Willmitzer L, Hannah MA (2011) High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions. Plant J 67:869–884 Cao D, Liu Y, Ma L, Jin X, Guo G, Tan R, Liu Z, Zheng L, Ye F, Liu W (2018) Transcriptome analysis of differentially expressed genes involved in selenium accumulation in tea plant (Camellia sinensis). PLoS ONE 13:e0197506 Carvalho SM, Vasconcelos MW (2013) Producing more with less: strategies and novel technologies for plant-based food biofortification. Food Res Int 54:961–971 Chaleckis R, Meister I, Zhang P, Wheelock CE (2019) Challenges, progress and promises of metabolite annotation for LC–MS-based metabolomics. Curr Opin Biotechnol 55:44–50 Chan QL, Afton SE, Caruso JA (2010) Investigation of selenium metabolites in se-enriched kale, Brassica oleracea, via HPLC-ICPMS and nanoESI-ITMS. J Anal At Spectrom 25:186–192 Chen Q, Lu X, Guo X, Guo Q, Li D (2017) Metabolomics characterization of two Apocynaceae plants, Catharanthus roseus and Vinca minor, using GC-MS and LC-MS methods in combination. Molecules 22:997 Chomchan R, Siripongvutikorn S, Puttarak P (2017) Selenium bio-fortification: an alternative to improve phytochemicals and bioactivities of plant foods. Funct Food Health Dis 7:263–279 Cui L, Zhao J, Chen J, Zhang W, Gao Y, Li B, Li YF (2018) Translocation and transformation of selenium in hyperaccumulator plant Cardamine enshiensis from Enshi, Hubei, China. Plant Soil 425:577–588 D’Amato R, Fontanella MC, Falcinelli B, Beone GM, Bravi E, Marconi O, Benincasa P, Businelli D (2018) Selenium biofortification in rice (Oryza sativa L.) sprouting: effects on Se yield and nutritional traits with focus on phenolic acid profile. J Agric Food Chem 66:4082–4090 Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352 Dall’ Acqua S, Ertani A, Pilon-Smits EAH, Fabrega-Prats M, Schiavon M (2019) Selenium biofortification differentially affects sulfur metabolism and accumulation of phytochemicals in two rocket species (Eruca Sativa Mill and Diplotaxis Tenuifolia) grown in hydroponics. Plants 8:68 de Souza LP, Naake T, Tohge T, Fernie AR (2017) From chromatogram to analyte to metabolite. How to pick horses for courses from the massive web-resources for mass spectral plant metabolomics. GigaScience 6:1–20 Deng X, Liu K, Li M, Zhang W, Zhao X, Zhao Z, Liu X (2017) Difference of selenium uptake and distribution in the plant and selenium form in the grains of rice with foliar spray of selenite or selenate at different stages. Field Crop Res 211:165–171 Dhillon KS, Dhillon SK (2003) Distribution and management of seliferous soils. Adv Agron 79:119–184 Di Tullo P, Versini A, Bueno M, Le Hécho I, Thiry Y, Biron P, Castrec-Rouelle M, Pannier F (2015) Stable isotope tracing: a powerful tool for selenium speciation and metabolic studies in non-hyperaccumulator plants (ryegrass Lolium perenne L.). Anal Bioanal Chem 407:9029–9042 Dimkovikj A, Van Hoewyk D (2014) Selenite activates the alternative oxidase pathway and alters primary metabolism in Brassica napus roots: evidence of a mitochondrial stress response. BMC Plant Biol 14:259 Dinkova-Kostova AT, Kostov RV (2012) Glucosinolates and isothiocyanates in health and disease. Trends Mol Med 18:337–347 Doerfler H, Lyon D, Nägele T, Sun X, Fragner L, Hadacek F, Egelhofer V, Weckwerth W (2013) Granger causality in integrated GC–MS and LC–MS metabolomics data reveals the interface of primary and secondary metabolism. Metabolomics 9:564–574 Dong JZ, Wang YD, Wang SH, Yin LP, Xu GJ, Zheng C, Lei C, Zhang MZ (2013) Selenium increases chlorogenic acid, chlorophyll and carotenoids on Lycine chinense leaves. J Sci Food Agric 93:310–315 Durán P, Acuña JJ, Gianfreda L, Azcón R, Funes-Collado V, Mora ML (2015) Endophytic selenobacteria as new inocula for selenium biofortification. Appl Soil Ecol 96:319–326 Eiche E, Bardelli F, Nothstein AK, Charlet L, Göttlicher J, Steininger R, Dhillon KS, Sadana US (2015) Selenium distribution and speciation in plant parts of wheat (Triticum aestivum) and Indian mustard (Brassica juncea) from a seleniferous area of Punjab, India. Sci Tot Environ 505:952–961 Eloh K, Sasanelli N, Maxia A, Caboni P (2016) Untargeted metabolomics of tomato plants after root–knot nematode infestation. J Agric Food Chem 64:5963–5968 El-Ramady H, Abdalla N, Taha HS, Alshaal T, El-Henawy A, Salah EDF, Shams MS, Youssef MS, Shalaby T, Bayoumi Y, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fari M (2016) Selenium and nano-selenium in plant nutrition. Environ Chem Lett 14:123–147 Farooq MU, Tang Z, Zeng R, Liang Y, Zhang Y, Zheng T, Ei HH, Ye X, Jia X, Zhu J (2019) Accumulation, mobilization, and transformation of selenium in rice grain provided with foliar sodium selenite. J Sci Food Agric 99:2892–2900 Fontanella MC, D’Amato R, Regni L, Proietti P, Beone GM, Businelli D (2017) Selenium speciation profiles in biofortified sangiovese wine. J Tr Elem Med Biol 43:87–92 Freeman JL, Tamaoki M, Stushnoff C, Quinn CF, Cappa JJ, Devonshire J, Fakra S, Marcus MA, McGrath S, Van Hoewyk D (2010) Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol Biochem 153:1630–1652 Gammelgaard B, Jackson MI, Gabel-Jensen C (2011) Surveying selenium speciation from soil to cell-forms and transformations. Anal Bioanal Chem 399:1743–1763 Gao HH, Chen MX, Hu XQ, Chai SS, Qin ML, Cao ZY (2018) Separation of selenium species and their sensitive determination in rice samples by ion-pairing reversed-phase liquid chromatography with inductively coupled plasma tandem mass spectrometry. J Sep Sci 41:432–439 Gionfriddo E, Naccarato A, Sindona G, Tagarelli A (2012) A reliable solid phase microextraction-gas chromatography–triple quadrupole mass spectrometry method for the assay of selenomethionine and selenomethylselenocysteine in aqueous extracts: Difference between selenized and not-enriched selenium potatoes. Anal Chim Acta 747:58–66 Golubkina NA, Kosheleva OV, Krivenkov LV, Dobrutskaya HG, Nadezhkin S, Caruso G (2017) Intersexual differences in plant growth, yield, mineral composition and antioxidants of spinach (Spinacia oleracea L.) as affected by selenium form. Sci Hortic 225:350–358 Gomez Ojeda A, Corrales Escobosa AR, Wrobel K, Yanez Barrientos E, Wrobel K (2013) Effect of Cd(II) and Se(IV) exposure on cellular distribution of both elements and concentration levels of glyoxal and methylglyoxal in Lepidium sativum. Metallomics 5:1254–1261 González-Morales S, Pérez-Labrada F, García-Enciso EL, Leija-Martínez P, Medrano-Macías J, Dávila-Rangel IE, Juárez-Maldonado A, Rivas-Martínez EN, Benavides-Mendoza A (2017) Selenium and sulfur to produce Allium functional crops. Molecules 22:558 Grotti M, Terol A, Todoli JL (2014) Speciation analysis by small-bore HPLC coupled to ICP-MS. Trend Anal Chem 61:92–106 Guardado-Félix D, Serna-Saldivar SO, Cuevas-Rodríguez EO, Jacobo-Velázquez DA, Gutiérrez-Uribe JA (2017) Effect of sodium selenite on isoflavonoid contents and antioxidant capacity of chickpea (Cicer arietinum L.) sprouts. Food Chem 226:69–74 Guardado-Félix D, Serna-Saldivar SO, Gutiérrez-Uribe JA, Chuck-Hernández C (2019) Selenium in germinated chickpea (Cicer arietinum L.) increases the stability of its oil fraction. Plants 8:113 Guevara Moreno OD, Acevedo Aguilar FJ, Yanez Barrientos E (2018) Selenium uptake and biotransformation and effect of selenium exposure on the essential and trace elements status: comparative evaluation of four edible plants. J Mex Chem Soc 62:247–258 Guignardi Z, Schiavon M (2017) Biochemistry of plant selenium uptake and metabolism. In: Pilon-Smits EAH, Winkel LHE, Lin ZQ (eds) Selenium in plants. Molecular, physiological, ecological and evolutionary aspects. Springer, Zurich, pp 21–34 Gupta M, Gupta S (2017) An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci 7:2074 Jia H, Song Z, Wu F, Ma M, Li Y, Han D, Yang Y, Zhang S, Cui H (2018) Low selenium increases the auxin concentration and enhances tolerance to low phosphorous stress in tobacco. Environ Exp Bot 153:127–134 Jiang Y, El Mehdawi AF, Tripti T, Lima LW, Stonehouse G, Fakra SC, Hu Y, Qi H, Pilon-Smits EAH (2018a) Characterization of selenium accumulation, localization and speciation in buckwheat–Implications for biofortification. Front Plant Sci 9:1583 Jiang Y, Schiavon M, Lima LW, Jones RR, El Mehdawi AF, Royer S, Zeng Z, Hu Y, Pilon-Smits EAH, Pilon M (2018b) Comparison of ATP sulfurylase 2 from selenium hyperaccumulator Stanleya pinnata and non-accumulator Stanleya elata reveals differential intracellular localization and enzyme activity levels. BBA General Sub 1862:2363–2371 Jiang L, Liu C, Cao H, Chen Z, Yang J, Cao S, Wei Z (2019) The role of cytokinin in selenium stress response in Arabidopsis. Plant Sci 281:122–132 Kapolna E, Laursen KH, Husted S, Larsen EH (2012) Biofortification and isotopic labeling of Se metabolites in onions and carrots following Foilar application of Se and 77Se. Food Chem 133:650–657 Karasinski J, Wrobel K, Corrales Escobosa AR, Konopka A, Bulska E, Wrobel K (2017) Allium cepa L. response to sodium selenite (Se (IV)) studied in plant roots by a LC-MS-based proteomic approach. J Agric Food Chem 65:3995–4004 Kieliszek M, Błażejak S (2016) Current knowledge on the importance of selenium in food for living organisms: a review. Molecules 21:609 Kolbert Z, Lehotai N, Molnár Á, Feigl G (2016) “The roots” of selenium toxicity: a new concept. PLant Signal Behav 11:e1241935 Kopsell DA, Randle WM (1999) Selenium affects the S-alk(en)yl cysteine sulfoxides among short-day onion cultivars. J Am Soc Hortic Sci 124:307–311 Kubachka KM, Meija J, LeDuc DL, Terry N, Caruso JA (2007) Selenium volatiles as proxy to the metabolic pathways of selenium in genetically modified Brassica juncea. Environ Sci Technol 41:1863–1869 Labanowska M, Filek M, Koscielniak J, Kurdziel M, Kulis E, Hartikainen H (2012) The effects of short-term selenium stress on Polish and Finnish wheat seedlings—EPR, enzymatic and fluorescence studies. J Plant Physiol 169:275–284 Lazo-Vélez MA, Guardado-Félix D, Avilés-González J, Romo-López I, Serna-Saldívar SO (2018) Effect of germination with sodium selenite on the isoflavones and cellular antioxidant activity of soybean (Glycine max). LWT Food Sci Technol 93:64–70 Lee J, Finley JW, Harnly JM (2005) Effect of selenium fertilizer on free amino acid composition of broccoli (Brassica oleracea Cv. Majestic) determined by gas chromatography with flame ionization and mass selective detection. J Agric Food Chem 53:9105–9111 Lee DK, Yoon MH, Kang YP, Yu J, Park JH, Lee J, Kwon SW (2013) Comparison of primary and secondary metabolites for suitability to discriminate the origins of Schisandra chinensis by GC/MS and LC/MS. Food Chem 141:3931–3937 Lehotai N, Kolbert Z, Peto A, Feigl G, Ordog A, Kumar D, Tari I, Erdei L (2012) Selenite-induced hormonal and signalling mechanisms during growth of Arabidopsis thaliana L. J Exp Bot 63:5677–5687 Lehotai N, Lyubenova L, Schroder P, Feigl G, Ordog A, Szilagyi K, Erdei L, Kolbert Z (2016) Nitro-oxidative stress contributes to selenite toxicity in pea (Pisum sativum L.). Plant Soil 400:107–122 Lima LW, Pilon-Smits EAH, Schiavon M (2018) Mechanism of selenium hyperaccumulation in plants: a survey of molecular, biochemical and ecological cues. BBA General Sub 1862:2343–2353 Longchamp M, Castrec-Rouelle M, Biron P, Bariac T (2015) Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate. Food Chem 182:128–135 Lü J, Zhang J, Jiang C, Deng Y, Özten N, Bosland MC (2016) Cancer chemoprevention research with selenium in the post-SELECT era: promises and challenges. Nutr Cancer 68:1–17 Mahieu NG, Genenbacher JL, Patti GJ (2016) A roadmap for the XCMS family of software solutions in metabolomics. Curr Opin Chem Biol 30:87–93 Mahn A (2017) Modelling of the effect of selenium fertilization on the content of bioactive compounds in broccoli heads. Food Chem 233:492–499 Malagoli M, Schiavon M, Pilon-Smits EAH (2015) Effects of selenium biofortification on crop nutritional quality. Front Plant Sci 6:280 Malheiros RS, Costa LC, Ávila RT, Pimenta TM, Teixeira LS, Brito FA, Zsögön A, Araújo WL, Ribeiro DM (2019) Selenium downregulates auxin and ethylene biosynthesis in rice seedlings to modify primary metabolism and root architecture. Planta 250:333–345 Malorgio F, Diaz KE, Ferrante A, Mensuali-Sodi A, Pezzarossa B (2009) Effects of selenium addition on minimally processed leafy vegetables grown in a floating system. J Sci Food Agric 89:2243–2251 Maneetong S, Chookhampaeng S, Chantiratikul A, Chinrasri O, Thosaikham W, Sittipout R, Chantiratikul P (2013) Hydroponic cultivation of selenium-enriched kale (Brassica oleracea var. alboglabra L.) seedling and speciation of selenium with HPLC–ICP-MS. Microchem J 108:87–91 Marcinkowska M, Barałkiewicz D (2016) Multielemental speciation analysis by advanced hyphenated technique–HPLC/ICP-MS: a review. Talanta 161:177–204 Matich AJ, McKenzie MJ, Lill RE, Brummell DA, McGhie TK, Chen RK (2012) Selenoglucosinolates and their metabolites produced in Brassica spp. fertilised with sodium selenate. Phytochemistry 75:140–152 Matich AJ, McKenzie MJ, Lill RE, McGhie TK, Chen RKY, Rowan DD (2015) Distribution of selenoglucosinolates and their metabolites in Brassica treated with sodium selenate. J Agric Food Chem 63:1896–1905 McKenzie MJ, Chen RK, Leung S, Joshi S, Rippon PE, Joyce NI, McManus MT (2017) Selenium treatment differentially affects sulfur metabolism in high and low glucosinolate producing cultivars of broccoli (Brassica oleracea L.). Plant Physiol Biochem 121:176–186 Mimmo T, Tiziani R, Valentinuzzi F, Lucini L, Nicoletto C, Sambo P, Scampicchio M, Pii Y, Cesco S (2017) Selenium biofortification in Fragaria× ananassa: implications on strawberry fruits quality, content of bioactive health beneficial compounds and metabolomic profile. Front Plant Sci 8:1887 Misra BB, Fahrmann JF, Grapov D (2017) Review of emerging metabolomic tools and resources: 2015–2016. Electrophoresis 38:2257–2274 Montes-Bayón M, Sharar M, Corte-Rodriguez M (2018) Trends on (elemental and molecular) mass spectrometry based strategies for speciation and metallomics. TrAC Trend Anal Chem 104:4–10 Moreno-Martin G, Sanz-Landaluze J, León-Gonzalez ME, Madrid Y (2019) In-vivo solid phase microextraction for quantitative analysis of volatile organoselenium compounds in plants. Anal Chim Acta 1081:72–80 Mostofa MG, Hossain MA, Siddiqui N, Fujita M, PhanTran LS (2017) Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. Chemosphere 178:212–223 Ni Z, Liu Y, Qu M (2014) Determination of 5 natural selenium species in selenium-enriched bamboo shoots using LC-ICP-MS. Food Sci Biotechnol 23:1049–1053 Novák O, Napier R, Ljung K (2017) Zooming in on plant hormone analysis: tissue-and cell-specific approaches. Ann Rev Plant Biol 68:323–348 Ogra Y, Anan Y (2012) Selenometabolomics explored by speciation. Biol Pharm Bull 35:1863–1869 Ogra Y, Kitaguchi T, Ishiwata K, Suzuki N, Toida T, Suzuki KT (2009) Speciation of selenomethionie metabolites in wheat germ extract. Metallomics 1:78–86 Ogra Y, Katayama A, Ogihara Y, Yawata A, Anan Y (2013) Analysis of animal and plant selenometabolites in roots of selenium accumulator Brassica rapa var. peruviridis, by speciation. Metallomics 5:429–436 Ogra Y, Ogihara Y, Anan Y (2017) Comparison of the metabolism of inorganic and organic selenium species between two selenium accumulator plants, garlic and Indian mustard. Metallomics 9:61–68 Ouerdane L, Aureli F, Flis P, Bierla K, Preud'Homme H, Cubadda F, Szpunar J (2013) Comprehensive speciation of low-molecular weight selenium metabolites in mustard seeds using HPLC–electrospray linear trap/orbitrap tandem mass spectrometry. Metallomics 5:1294–1304 Parida AK, Panda A, Rangani J (2018) Metabolomics-guided elucidation of abiotic stress tolerance mechanisms in plants. In: Ahanger MA, Singh VP, Tripathi DH, Alam P, Alyemeni MN, Ahmad P (eds) Plant metabolites and regulation under environmental stress. Academic Press, Cambridge, pp 89–131 Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22:4056–4075 Patra AR, Hajra S, Baral R, Bhattacharya S (2019) Use of selenium as micronutrients and for future anticancer drug: a review. Nucleus. https://doi.org/10.1007/s13237-019-00306-y Pilon-Smits EAH (2017) Plant Se uptake and metabolism—how are hyperaccumulators different? In: Pilon-Smits EAH, Winkel LHE, Lin ZQ (eds) Selenium in plants. Springer, Zurich, pp 56–66 Poblaciones MJ, Rodrigo S, Santamaría O, Chen Y, McGrath SP (2014) Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: from grain to cooked pasta. Food Chem 146:378–384 Poschenrieder C, Cabot C, Martos S, Gallago B, Barcelo J (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:15–25 Pröfrock D, Prange A (2012) Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends. Appl Spectrosc 66:843–868 Puccinelli M, Malorgio F, Pezzarossa B (2017) Selenium enrichment of horticultural crops. Molecules 22:933 Pyrzynska K, Sentkowska A (2019) Liquid chromatographic analysis of selenium species in plant materials. TrAC Trend Anal Chem 111:128–138 Rayman M (2012) Selenium and human health. Lancet 379:1256–1268 Ribeiro DM, Silva Junior DD, Cardoso FB, Martins AO, Silva WA, Nascimento VL, Araújo WL (2016) Growth inhibition by selenium is associated with changes in primary metabolism and nutrient levels in Arabidopsis thaliana. Plant Cell Environ 39:2235–2246 Robbins RJ, Keck AS, Banuelos G, Finley JW (2005) Cultivation conditions and selenium fertilization alter thephenolic profile, glucosinolate, and sulforaphane content of broccoli. J Med Food 8:204–214 Rothwell JA, Perez-Jimenez J, Neveu V, Medina-Remón A, M’Hiri N, García-Lobato P, Manach C, Knox C, Eisner R, Wishart DS, Scalbert A (2013) Phenol-Explorer 3.0: a major update of the Phenol-Explorerc database to incorporate data on the effects of food processing on polyphenol content. Database (Oxford) bat070 Ruszczynska A, Konopka A, Kurek E, Torres Elguera J, Bulska E (2017) Investigation of biotransformation of selenium in plants using spectrometric methods. Spectrochim Acta Part B 130:7–16 Sánchez-Rodas D, Mellano F, Martínez F, Palencia P, Giráldez I, Morales E (2016) Speciation analysis of Se-enriched strawberries (Fragaria ananassa Duch) cultivated on hydroponics by HPLC-TR-HG-AFS. Microchem J 127:120–124 Sarabia LD, Hill CB, Boughton BA, Roessner U (2018) Advances of metabolite profiling of plants in challenging environments. Ann Plant Rev Online 1:1–45 Schiavon M, Pilon-Smits EAH (2017a) The fascinating facets of plant selenium accumulation–biochemistry, physiology, evolution and ecology. New Phytol 213:1582–1596 Schiavon M, Pilon-Smits EAH (2017b) Selenium biofortification and phytoremediation phytotechnologies: a review. J Environ Qual 46:10–19 Schiavon M, dall’ Acqua S, Mietto A, Pilon-Smits EAH, Sambo P, Masi A, Malagoli M (2013) Selenium fertilization alters the chemical composition and antioxidant constituents of tomato (Solanum lycopersicon L.). J Agric Food Chem 61:0542–10554 Schiavon M, Berto C, Malagoli M, Trentin A, Sambo P, Dall'Acqua S, Pilon-Smits EAH (2016) Selenium biofortification in radish enhances nutritional quality via accumulation of methyl-selenocysteine and promotion of transcripts and metabolites related to glucosinolates, phenolics, and amino acids. Front Plant Sci 7:1371 Sentkowska A, Pyrzynska K (2018) Hydrophilic interaction liquid chromatography in the speciation analysis of selenium. J Chromatogr B 1074–1075:8–15 Shah M, Meija J, Caruso JA (2007) Relative mass defect filtering of high-resoltion mass spectra for exploring minor selenium volatiles in selenium-enriched green onions. Anal Chem 79:846–853 Shahverdi MA, Omidi H, Tabatabaei SJ (2018) Plant growth and steviol glycosides as affected by foliar application of selenium, boron, and iron under NaCl stress in Stevia rebaudiana Bertoni. Ind Crops Prod 125:408–415 Shao S, Mi X, Ouerdane L, Lobinski R, García-Reyes JF, Molina-Díaz A, Vass A, Dernovics M (2014) Quantification of Se-methylselenocysteine and its γ-glutamyl derivative from naturally Se-enriched green bean (Phaseolus vulgaris vulgaris) after HPLC-ESI-TOF-MS and Orbitrap MSn-based identification. Food Anal Methods 7:1147–1157 Sura-de Jong M, Reynolds RJ, Richterova K, Musilova L, Staicu LC, Chocholata I, Cappa JJ, Taghavi S, van der Lelie D, Frantik T, Dolinova I, Strejcek M, Cochran AT, Lovecka P, Pilon-Smits EAH (2015) Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties. Front Plant Sci 6:113 Tamaoki M, Maruyama-Nakashita A (2017) Molecular mechanisms of selenium responses and resistance in plants. In: Pilon-Smits EAH, Winkel LHE, Lin ZQ (eds) Selenium in plants. Springer, Cham, pp 35–48 Tamaoki M, Freeman JL, Pilon-Smits EAH (2008) New insights into the roles of ethylene and jasmonic acid in the acquisition of selenium resistance in plants. Plant Signal Behav 3:865–867 Tang W, Dang F, Evans D, Zhong H, Xiao L (2017) Understanding reduced inorganic mercury accumulation in rice following selenium application: selenium application routes, speciation and doses. Chemosphere 169:369–376 Thiruvengadam M, Chung IM (2015) Selenium, putrescine, and cadmium influence health-promoting phytochemicals and molecular-level effects on turnip (Brassica rapa ssp. rapa). Food Chem 173:185–193 Thosaikham W, Jitmanee K, Sittipout R, Maneetong S, Chantiratikul A, Chantiratikul P (2014) Evaluation of selenium species in selenium-enriched pakchoi (Brassica chinensis Jusl var parachinensis (Bailey) Tsen & Lee) using mixed ion-pair reversed phase HPLC–ICP-MS. Food Chem 145:736–742 Tiago FJ, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, António C (2016) Mass spectrometry-based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrom Rev 35:620–649 Tian M, Xu X, Liu Y, Xie L, Pan S (2016) Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars. Food Chem 190:374–380 Tian M, Xu X, Liu F, Fan X, Pan S (2018a) Untargeted metabolomics reveals predominant alterations in primary metabolites of broccoli sprouts in response to pre-harvest selenium treatment. Food Res Int 111:205–211 Tian M, Yang Y, Ávila FW, Fish T, Yuan H, Hui M, Pan S, Thannhauser TW, Li L (2018b) Effects of selenium supplementation on glucosinolate biosynthesis in broccoli. J Agric Food Chem 66:8036–8044 Tie M, Zhuang X, Han J, Liu L, Hu Y, Li H (2015) Selenium speciation in soybean by high performance liquid chromatography coupled o electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS). Microchem J 123:70–75 Tie M, Sun J, Gao Y, Yao Y, Wang T, Zhong H, Li H (2018) Identification and quantitation of seleno-amino acids in mung bean sprouts by high-performance liquid chromatography coupled with mass spectrometry (HPLC–MS). Eur Food Res Technol 244:491–500 Tognon GB, Sanmartín C, Alcolea V, Cuquel FL, Goicoechea N (2016) Mycorrhizal inoculation and/or selenium application affect post-harvest performance of snapdragon flowers. Plant Growth Regul 78:389–400 Torres Elguera JC, Yanez Barrientos E, Wrobel K, Wrobel K (2013) Effect of cadmium (Cd(II)), selenium (Se(IV)) and their mixtures on phenolic compounds and antioxidant capacity in Lepidium sativum. Acta Physiol Plant 35:431–441 Trolove SN, Tan Y, Morrison SC, Feng L, Eason J (2018) Development of a method for producing selenium-enriched radish sprouts. LWT 95:187–192 Van Hoewyk D (2013) A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann Bot 112:965–972 Van Hoewyk D, Çakir O (2017) Manipulating selenium metabolism in plants: a simple twist of metabolic fate can alter selenium tolerance and accumulation. In: Pilon-Smits EAH, Winkel LHE, Lin ZQ (eds) Selenium in plants. Springer, Cham, pp 165–176 Van Hoewyk D, Takahasi H, Inoue E, Hess A, Tamaoki M, Pilon-Smits EAH (2008) Transcriptome analysis give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253 Vogiatzis CG, Zachariadis GA (2014) Tandem mass spectrometry in metallomics and the involving role of ICP-MS detection: a review. Anal Chim Acta 819:1–14 Wan J, Zhang M, Adhikari B (2018) Advances in selenium-enriched foods: from the farm to the fork. Tr Food Sci Technol 76:1–5 Wang YD, Wang X, Wong YS (2012) Proteomics analysis reveals multiple regulatory mechanisms in response to selenium in rice. J Proteom 75:1849–1866 Wang P, Menzies NW, Lombi E, McKenna BA, James S, Tang C, Kopittke PM (2015) Synchrotron-based X-ray absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots and leaves of wheat and rice. J Exp Bot 66:4795–4806 Wang G, Wu L, Zhang H, Wu W, Zhang M, Li X, Wu H (2016) Regulation of the phenylpropanoid pathway: a mechanism of selenium tolerance in peanut (Arachis hypogaea L.) seedlings. J Agric Food Chem 64:3626–3635 Wang J, Cappa JJ, Harris JP, Edger PP, Zhou W, Pires JC, Pilon-Smits EAH (2018) Transcriptome-wide comparison of selenium hyperaccumulator and nonaccumulator Stanleya species provides new insight into key processes mediating the hyperaccumulation syndrome. Plant Biotechnol J 16:1582–1594 White PJ (2018) Selenium metabolism in plants. Biochim Biophys Acta General Sub 1862:2333–2342 Wiesner-Reinhold M, Schreiner M, Baldermann S, Schwarz D, Hanschen FS, Kipp AP, Rowan DD, Bentley-Hewitt KL, McKenzie MJ (2017) Mechanisms of selenium enrichment and measurement in brassicaceous vegetables, and their application to human health. Front Plant Sci 8:1365 Winkel LHE, Vriens B, Jones GD, Schneider LS, Pilon-Smits EAH, Banuelos GS (2015) Selenium cycling across soil–plant–atmosphere interfaces: a critical review. Nutrients 7:4199–4239 Wrobel K, Wrobel K, Kannamkumarath SS, Caruso JA, Wysocka IA, Bulska E, Swiatek J, Wierzbicka M (2004) HPLC-ICP-MS speciation of selenium in enriched onion leaves—a potential dietary source of Se-methylselenocysteine. Food Chem 86:617–623 Wu Z, Yin X, Bañuelos GS, Lin ZQ, Liu Y, Li M, Yuan L (2016) Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L.). Front Plant Sci 7:1875 Xieping S, Yi H, Chen Y, Youjin L, Tan P, Xie Y (2018) Effects of different concentrations of Se6+ on selenium absorption, transportation, and distribution of citrus seedlings (C. junos cv. Ziyang xiangcheng). J Plant Nutr 41:168–177 Yanez Barrientos E, Rodriguez Flores C, Wrobel K, Wrobel K (2012) Impact of cadmium and selenium exposure on trace elements, fatty acids and oxidative stress in Lepidium sativum. J Mex Chem Soc 56:3–9 Yasin M, El-Mehdawi AF, Pilon-Smits EAH, Faisal M (2015) Selenium-fortified wheat:potential of microbes for biofortification of selenium and other essential nutrients. Int J Phytorem 17:777–786 Yin H, Qi Z, Li M, Ahammed GJ, Chu X, Zhou J (2019) Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L. Ecotoxicol Environ Safety 169:911–917 Zembala M, Filek M, Walas S, Mrowiec H, Kornas A, Miszalski Z, Hartikainen H (2010) Effect of selenium on macro and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant Soil 329:457–468 Zeng R, Farooq MU, Wang L, Su Y, Zheng T, Ye X, Jia X, Zhu J (2019) Study on differential protein expression in natural selenium-enriched and non-selenium-enriched rice based on iTRAQ quantitative proteomics. Biomolecules 9:130 Zhang C, Lai F, Gao A, Zhou X (2017) Absorption, translocation and redistribution of selenium supplied at different growth stages of rice. Int J Agric Biol 19:1601–1607 Zhou Y, Tang Q, Wu M, Mou D, Liu H, Wang S, Zhang C, Ding L, Luo J (2018) Comparative transcriptomics provides novel insights into the mechanisms of selenium tolerance in the hyperaccumulator plant Cardamine hupingshanensis. Sci Rep 8:2789 Zhu Z, Chen Y, Shi G, Zhang X (2017) Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. Food Chem 219:79–184 Zhu Z, Zhang Y, Liu J, Chen Y, Zhang X (2018) Exploring the effects of selenium treatment on the nutritional quality of tomato fruit. Food Chem 252:9–15