Differences in osteon structure histomorphometry between puppyhood and adult stages in the Golden Retriever
Tóm tắt
Từ khóa
Tài liệu tham khảo
Britz HM, Thomas CDL, Clement JG, Cooper DML (2009) The relation of femoral osteon geometry to age, sex, height and weight. Bone 45:77–83. doi: 10.1016/j.bone.2009.03.654
Caccia G, Magli F, Tagi VM et al (2016) Histological determination of the human origin from dry bone: a cautionary note for subadults. Int J Legal Med 130:299–307. doi: 10.1007/s00414-015-1271-6
Cattaneo C, Porta D, Gibelli D, Gamba C (2009) Histological determination of the human origin of bone fragments. J Forensic Sci 54:531–533. doi: 10.1111/j.1556-4029.2009.01000.x
Chan AHW, Crowder CM, Rogers TL (2007) Variation in cortical bone histology within the human femur and its impact on estimating age at death. Am J Phys Anthropol 132:80–88. doi: 10.1002/ajpa.20465
Crescimanno A, Stout SD (2012) Differentiating fragmented human and nonhuman long bone using osteon circularity. J Forensic Sci 57:287–294
Currey JD (1960) Differences in the blood-supply of bone of different histological types. Q J Microsc Sci 101:351–370
Currey JD (1964) Some effects of ageing in human Haversian systems. J Anat 98:69–75
Dammers K (2006) Using osteohistology for ageing and sexing. In: Ruscillo D (ed) Recent advances in ageing and sexing animal bones. In: Proc 9th ICAZ Conference. Oxbow, Oxford, pp 9–39
Dominguez VM, Crowder CM (2012) The utility of osteon shape and circularity for differentiating human and non-human Haversian bone. Am J Phys Anthropol 149:84–91
Havill LM (2004) Osteon remodeling dynamics in Macaca mulatta: normal variation with regard to age, sex, and skeletal maturity. Calcif Tissue Int 74:95–102. doi: 10.1007/s00223-003-9038-3
Hidaka S, Matsumoto M, Ohsako S, Toyoshima Y, Nishinakagawa H (1998) A histometrical study on the long bones of raccoon dogs, Nyctereutes procyonoides and badgers, Meles meles. J Vet Med Sci 60:323–326
Hillier ML, Bell LS (2007) Differentiating human bone from animal bone: a review of histological methods. J Forensic Sci 52:249–263. doi: 10.1111/j.1556-4029.2006.00368.x
Jee WS, Bartley MJ, Cooper R, Dockum N (1970) Bone structure. In: Andersen AC (ed) The beagle as an experimental dog. Iowa State University Press, Ames, pp 162–188
Jowsey J (1966) Studies of Haversian systems in man and some animals. J Anat 100:857–864
Kim HK, Shiraj S, Anton C, Horn PS (2014) The patellofemoral joint: do age and gender affect skeletal maturation of the osseous morphology in children? Pediatr Radiol 44:141–148. doi: 10.1007/s00247-013-2790-2
Manilay Z, Novitskaya E, Sadovnikov E, McKittrick J (2013) A comparative study of young and mature bovine cortical bone. Acta Biomater 9:5280–5288. doi: 10.1016/j.actbio.2012.08.040
Martiniaková M, Omelka R, Chrenek P, Vondráková M, Bauerová M (2005) Age-related changes in histological structure of the femur in juvenile and adult rabbits: a pilot study. Bull Vet Inst Pulawy 49:227–230
Martiniaková M, Omelka R, Ryban L, Grosskopf B, Vondráková M, Bauerová M, Fabis M, Chrenek P et al (2006) Comparative study of compact bone tissue microstructure between non-transgenic and transgenic rabbits with WAP-hFVIII gene construct. Anat Histol Embryol 35:310–315. doi: 10.1111/j.1439-0264.2006.00690.x
Morales-Avalos R, Leyva-Villegas J, Sánchez-Mejorada G et al (2014) Age- and gender-related variations in morphometric characteristics of thoracic spine pedicle: a study of 4,800 pedicles. Clin Anat 27:441–450. doi: 10.1002/ca.22359
Mori R, Kodaka T, Sano T, Yamagishi N, Asari M, Naito Y (2003) Comparative histology of the laminar bone between young calves and foals. Cells Tissues Organs 175:43–50
Mori R, Kodaka T, Soeta S et al (2005) Preliminary study of histological comparison on the growth patterns of long-bone cortex in young calf, pig, and sheep. J Vet Med Sci 67:1223–1229
Mulhern DM, Ubelaker DH (2003) Histologic examination of bone development in juvenile chimpanzees. Am J Phys Anthropol 122:127–133
Nganvongpanit K, Phatsara M, Settakorn J, Mahakkanukrauh P (2015) Differences in compact bone tissue microscopic structure between adult humans (Homo sapiens) and Assam macaques (Macaca assamensis). Forensic Sci Int 254:e1–e5. doi: 10.1016/j.forsciint.2015.06.018
Parenteau CS, Wang NC, Zhang P, Caird MS, Wang SC (2014) Quantification of pediatric and adult cervical vertebra—anatomical characteristics by age and gender for automotive application. Traffic Inj Prev 15:572–582. doi: 10.1080/15389588.2013.843774
Singh IJ, Gunberg DL (1971) Quantitative histology of changes with age in rat bone cortex. J Morphol 133:241–251. doi: 10.1002/jmor.1051330208
Skedros JG, Hunt KJ, Hughes PE, Winet H (2003) Ontogenetic and regional morphologic variations in the turkey ulna diaphysis: implications for functional adaptation of cortical bone. Anat Rec A Discov Mol Cell Evol Biol 273:609–629
Skedros JG, Knight AN, Clark GC et al (2013) Scaling of Haversian canal surface area to secondary osteon bone volume in ribs and limb bones. Am J Phys Anthropol 151:230–244. doi: 10.1002/ajpa.22270
Streeter M (2012) The determination of age in subadult from the rib cortical microstructure. Methods Mol Biol 915:101–108. doi: 10.1007/978-1-61779-977-8_6
Thompson DD (1980) Age changes in bone mineralization, cortical thickness, and Haversian canal area. Calcif Tissue Int 31:5–11. doi: 10.1007/BF02407161
Whitman EJ (2004) Differentiating between human and non-human secondary osteons in human, canine, and bovine rib tissue. Masters thesis.small breed dogs. Masters thesis. Michigan State University, East Lansing