Differences in antimony and arsenic releases from lead smelter fly ash in soils
Tài liệu tham khảo
Atencio, 2010, The pyrochlore supergroup of minerals: nomenclature, Can. Mineral., 48, 673, 10.3749/canmin.48.3.673
Birkefeld, 2006, In situ investigation of dissolution of heavy metal containing mineral particles in an acidic forest soil, Geochim. Cosmochim. Acta, 70, 2726, 10.1016/j.gca.2006.02.022
Cornelis, 2008, Leaching mechanisms of oxyanionic metalloids and metal species in alkaline solid waste: a review, Appl. Geochem., 23, 955, 10.1016/j.apgeochem.2008.02.001
Diemar, 2009, Dispersion of antimony from oxidizing ore deposits, Pure Appl. Chem., 81, 1547, 10.1351/PAC-CON-08-10-21
Erbanová, 2008, Export of arsenic from forested catchments under easing atmospheric pollution, Environ. Sci. Technol., 42, 7187, 10.1021/es800467j
Ettler, 2005, Mineralogy of air-pollution-control residues from a secondary lead smelter: environmental implication, Environ. Sci. Technol., 39, 9309, 10.1021/es0509174
Ettler, 2007, Antimony availability in highly polluted soils and sediments – a comparison of single extractions, Chemosphere, 68, 455, 10.1016/j.chemosphere.2006.12.085
Ettler, 2008, Controls on metal leaching from secondary Pb smelter air-pollution-control residues, Environ. Sci. Technol., 42, 7878, 10.1021/es801246c
Ettler, 2010, Antimony mobility in lead smelter-polluted soils, Geoderma, 155, 409, 10.1016/j.geoderma.2009.12.027
Ettler, 2010, Antimony and arsenic leaching from secondary lead smelter air-pollution-control residues, Waste Manage. Res., 28, 587, 10.1177/0734242X09335704
Filella, 2002, Antimony in the environment: a review focused on natural waters. II. Relevant solution chemistry, Earth-Sci. Rev., 59, 265, 10.1016/S0012-8252(02)00089-2
Gál, 2007, Bioavailability of arsenic and antimony in soils from an abandoned mining area, Glendinning (SW Scotland), J. Environ. Sci. Health Part A, 42, 1263, 10.1080/10934520701435585
He, 2007, Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China, Environ. Geochem. Health, 29, 209, 10.1007/s10653-006-9066-9
ICDD, 2003
Lábár, 2005, Consistent indexing of a (set of) SAED pattern(s) with the process diffraction program, Ultramicroscopy, 103, 237, 10.1016/j.ultramic.2004.12.004
Majzlan, 2011, A mineralogical, geochemical and microbiological assessment of the antimony- and arsenic-rich neutral mine drainage tailing near Pezinok, Slovakia, Am. Mineral., 96, 1, 10.2138/am.2011.3556
Mihaljevič, 2010, Alteration of arsenopyrite in soils under different vegetation covers, Sci. Total Environ., 408, 1286, 10.1016/j.scitotenv.2009.12.003
Müller, 2007, Mobilization of antimony and arsenic in soil and sediment samples – evaluation of different leaching procedures, Water Air Soil Pollut., 183, 427, 10.1007/s11270-007-9391-3
Pansu, 2006
Parkhurst, 1999, User's Guide to PHREEQC (version 2) – a computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations
Rauret, 1999, Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials, J. Environ. Monit., 1, 57, 10.1039/a807854h
Takaoka, 2005, Determination of chemical form of antimony in contaminated soil around a smelter using X-ray absorption fine structure, Anal. Sci., 27, 769, 10.2116/analsci.21.769
Tighe, 2005, Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid, J. Environ. Monit., 7, 1177, 10.1039/b508302h
Vítková, 2009, The pH-dependent leaching of inorganic contaminants from secondary lead smelter fly ash, J. Hazard. Mater., 167, 427, 10.1016/j.jhazmat.2008.12.136
Wilson, 2010, The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review, Environ. Pollut., 158, 1169, 10.1016/j.envpol.2009.10.045