Difference Methods for Solving Nonlocal Boundary Value Problems for Fractional-Order Pseudo-Parabolic Equations with the Bessel Operator
Tóm tắt
Từ khóa
Tài liệu tham khảo
Dzektser, E.S., Equations of Free-Surface Groundwater Flow in Multi-Layer Media, Dokl. AN SSSR, 1975, vol. 220, no. 3, pp. 540–543.
Rubinstein, L.I., On the Process of Heat Propagation in Heterogeneous Media, Izv. AN SSSR. Ser. Geogr. Geofiz., 1948, vol. 12, no. 1, pp. 27–45.
Ting, T.W., A Cooling Process According to Two-Temperature Theory of Heat Conduction, J. Math. An. Appl., 1974, vol. 45, no. 9, pp. 23–31.
Hallaire, M., Le Potentiel Efficace de l’eau Dans le Sol en Régime de Desséchement, in L’eau et la Production Vegetale, Paris: INRA, 1964, pp. 27–62.
Chudnovskii, A.F., Teplofizika pochv (Thermophysics of Soils), Moscow: Nauka, 1976.
Bagley, R.L. and Tovik, P.J., Differential Calculus Based On Fractional derivatives—A New Approach to Calculation of Structures with Visco-Elastic Damping, Aerokosm. Tekh., 1984, vol. 2, no. 2, pp. 84–93.
Dinariev, O.Yu., Filtration in Fractured Medium with Fractal Geometry Cracks, Izv. SO RAN. Mekh. Zhidk. Gaza, 1990, vol. 5, pp. 66–70.
Mandelbrojt, S., Sulla Generalizzazione del Calcolo Clelle Variazione, Atti della Reale Accademia dei Lincei. Rendiconti della Classe di Scienze Fisiche, Matematiche e Naturali. Ser. 6, 1925, vol. 1, pp. 151–156.
Mal’shakov, A.V., Hydrodynamic Equations for Fractal Porous Media, Inzh.-Fiz. Zh., 1992, vol. 62, no. 3, pp. 405–410.
Schaefer, D. and Kefer, K., in Proc. of the Sixth Trieste International Symposium on Fractals in Physics, Trieste: ICTP, 1985, pp. 62–71.
Samko, S.G., Kilbas, A.A., and Marichev, O.I.,Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya (Integrals and Fractional Derivatives and Some Their Applications), Minsk, 1987.
Nakhushev, A.M., Elementy drobnogo ischisleniya i ikh primeneniya (Elements of Fractional Calculus and Their Applications), Nalchik: NII PMA KBNTS RAN, 2000.
Chukbar, K.V., Stochastic Transport and Fractional Derivatives,Zh. Exp. Teoret. Fiz., 1995, vol. 108, no. 5(11), pp. 1875–1884.
Kochubei, A.N., Fractional Diffusion, Diff. Ur., 1990, vol. 26, no. 4, pp. 660–670.
Bedanokova, S.Yu., Equation of Soil Moisture Motion and Mathematical Model of Moisture Content in Soil, Based on the Aller Equation, Vest. Adygeya Gos. Univ. Ser. 4: Yestestv.-Mat. Tekh. Nauki, 2007, vol. 4, pp. 68–71.
Alikhanov, A.A., A Priori Estimates for Solutions of Boundary Value Problems for Fractional Order Equations, Diff. Ur., 2010, vol. 46, no. 5, pp. 660–666.
Alikhanov, A.A., A New Difference Scheme for the Time Fractional Diffusion Equation, J. Comput. Phys., 2015, vol. 280, pp. 424–438.
Taukenova, F.I. and Shkhanukov-Lafishev, M.H., Difference Methods for Solving Boundary Value Problems for Differential Equations of Fractional Order, Zh. Vych. Mat. Mat. Fiz., 2006, vol. 46, no. 10, pp. 1871–1881.
Kozhanov, A.I., A Nonlocal Boundary Value Problem with Variable Coefficients for Heat Equation and Aller Equation, Diff. Ur., 2004, vol. 40, no. 6, pp. 763–774.
Venitsianov, E.V. and Rubinshtein, R.N., Dinamika sorbtsii iz zhidkikh sred (Dynamics of Sorption from Fluids), Moscow: Nauka, 1983.
Samarskii, A.A., Teoriya raznostnykh skhem (The Theory of Difference Schemes), Moscow: Nauka, 1977.
Beshtokov, M.H., On Numerical Solution of Nonlocal Boundary Value Problem for Degenerate Pseudo-Parabolic Equation, Diff. Ur., 2016, vol. 52, no. 10, pp. 1393–1406.
Beshtokov, M.H., Difference Method for Nonlocal Boundary Value Problem for Degenerate Third-Order Pseudo-Parabolic Equation with Variable Coefficients, Zh. Vych. Mat. Mat. Fiz., 2016, vol. 56, no. 10, pp. 1780–1794.
Beshtokov, M.H., Local and Nonlocal Boundary Value Problems for Degenerate and Non-Degenerate Pseudo-Parabolic Equations with Riemann–Liouville Fractional Derivative, Diff. Ur., 2018, vol. 54, no. 6, pp. 763–778.
Caputo, H., Linear Models of Dissipation Whose Q is Almost Frequency Independent II, Geophys. J. Royal Astron. Soc., 1967, vol. 13, pp. 529–539.
Gerasimov, A.N., Generalization of Linear Laws of Deformation and Their Application to Problems of Internal Friction, Prikl. Mat. Mekh., 1948, vol. 12, pp. 251–260.
Li, D., Liao, H.-L., Sun, W., Wang, J., and Zhang, J., Analysis of L1-Galerkin FEMs for Time-Fractional Nonlinear Parabolic Problems,Commun. Comput. Phys., 2018, vol. 24, no. 1, pp. 86–109.
Samarskii, A.A. and Gulin, A.V., Stabil’nost’ raznostnykh skhem (Stability of Difference Schemes), Moscow: Nauka, 1973.
Faddeev, D.K. and Faddeeva, V.N., Vychislitel’nye metody lineinoi algebry (Computational Methods of Linear Algebra), Moscow: Fizmatgiz, 1960.