Difference Characterization of Besov and Triebel–Lizorkin Spaces on Spaces of Homogeneous Type
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alvarado, R., Mitrea, M.: Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces. A Sharp Theory. Lecture Notes in Mathematics, vol. 2142. Springer, Cham (2015)
Alvarado, R., Górka, H., Hajłasz, P.: Sobolev embedding for $$M^{1,p}$$ spaces is equivalent to a lower bound of the measure. J. Funct. Anal. 279, 108628, 39 pp (2020)
Alvarado, R., Wang, F., Yang, D., Yuan, W.: Pointwise characterization of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type. (Submitted)
Auscher, P., Hytönen, T.: Orthonormal bases of regular wavelets in spaces of homogeneous type. Appl. Comput. Harmon. Anal. 34, 266–296 (2013)
Besov, O.V., Il’in, V.P., Nikol’skiĭ, S.M.: Integralnye Predstavleniya Funktsii i Teoremy Vlozheniya, 2nd edn. Fizmatlit “Nauka”, Moscow (1996)
Bui, T.A., Duong, X.T.: Sharp weighted estimates for square functions associated to operators on spaces of homogeneous type. J. Geom. Anal. 30, 874–900 (2020)
Bui, T.A., Duong, X.T., Ly, F.K.: Maximal function characterizations for new local Hardy type spaces on spaces of homogeneous type. Trans. Am. Math. Soc. 370, 7229–7292 (2018)
Bui, T.A., Duong, X.T., Ky, L.D.: Hardy spaces associated to critical functions and applications to $$T1$$ theorems. J. Fourier Anal. Appl. 26, Article number 27, 67 pp (2020)
Bui, T.A., Duong, X.T., Ly, F.K.: Maximal function characterizations for Hardy spaces on spaces of homogeneous type with finite measure and applications. J. Funct. Anal. 278, 108423. 55 pp (2020)
Coifman, R.R., Weiss, G.: Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, (French) Étude de Certaines Intégrales Singulières. Lecture Notes in Mathematics, vol. 242. Springer, Berlin (1971)
Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)
Deng, D., Han, Y.: Harmonic Analysis on Spaces of Homogeneous Type. With a Preface by Yves Meyer. Lecture Notes in Mathematics, vol. 1966. Springer, Berlin (2009)
Duong, X.T., Yan, L.: Hardy spaces of spaces of homogeneous type. Proc. Am. Math. Soc. 131, 3181–3189 (2003)
Fu, X., Ma, T., Yang, D.: Real-variable characterizations of Musielak–Orlicz–Hardy spaces on spaces of homogeneous type. Ann. Acad. Sci. Fenn. Math. 45, 343–410 (2020)
Grigor’yan, A.: Heat kernels and function theory on metric measure spaces. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), Contemp. Math. vol. 338, pp. 143–172. Amer. Math. Soc., Providence (2003)
Grigor’yan, A., Hu, J., Lau, K.: Heat kernels on metric-measure spaces and an application to semi-linear elliptic equations. Trans. Am. Math. Soc. 355, 2065–2095 (2003)
Grafakos, L., Liu, L., Yang, D.: Vector-valued singular integrals and maximal functions on spaces of homogeneous type. Math. Scand. 104, 296–310 (2009)
Grafakos, L., Liu, L., Maldonado, D., Yang, D.: Multilinear analysis on metric spaces. Diss. Math. 497, 1–121 (2014)
Han, Y., Yang, D.: New characterizations and applications of inhomogeneous Besov and Triebel–Lizorkin spaces on homogeneous type spaces and fractals. Diss. Math. (Rozprawy Mat.) 403, 1–102 (2002)
Han, Y., Yang, D.: Some new spaces of Besov and Triebel–Lizorkin type on homogeneous spaces. Studia Math. 156, 67–97 (2003)
Han, Y., Lu, S., Yang, D.: Inhomogeneous Besov and Triebel–Lizorkin spaces on spaces of homogeneous type. Approx. Theory Appl. (N. S.) 15(3), 37–65 (1999)
Han, Y., Müller, D., Yang, D.: Littlewood–Paley characterizations for Hardy spaces on spaces of homogeneous type. Math. Nachr. 279, 1505–1537 (2006)
Han, Y., Müller, D., Yang, D.: A theory of Besov and Triebel–Lizorkin spaces on metric measure spaces modeled on Carnot–Carathéodory spaces. Abstr. Appl. Anal., Art. ID 893409, 1–250 (2008)
Han, Y., Han, Y., Li, J.: Criterion of the boundedness of singular integrals on spaces of homogeneous type. J. Funct. Anal. 271, 3423–3464 (2016)
Han, Y., Han, Y., Li, J.: Geometry and Hardy spaces on spaces of homogeneous type in the sense of Coifman and Weiss. Sci. China Math. 60, 2199–2218 (2017)
Han, Y., Li, J., Ward, L.A.: Hardy space theory on spaces of homogeneous type via orthonormal wavelet bases. Appl. Comput. Harmon. Anal. 45, 120–169 (2018)
Han, Y., Han, Y., He, Z., Li, J., Pereyra, C.: Geometric characterizations of embedding theorems: for Sobolev, Besov, and Triebel–Lizorkin spaces on spaces of homogeneous type—via orthonormal wavelets. J. Geom. Anal. (2020). https://doi.org/10.1007/s12220-020-00536-6
He, Z., Han, Y., Li, J., Liu, L., Yang, D., Yuan, W.: A complete real-variable theory of Hardy spaces on spaces of homogeneous type. J. Fourier Anal. Appl. 25, 2197–2267 (2019)
He, Z., Liu, L., Yang, D., Yuan, W.: New Calderón reproducing formulae with exponential decay on spaces of homogeneous type. Sci. China Math. 62, 283–350 (2019)
He, Z., Wang, F., Yang, D., Yuan, W.: Wavelet characterizations of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type and their applications. Appl. Comput. Harmon. Anal. 54, 176–226 (2021)
He, Z., Yang, D., Yuan, W.: Real-variable characterizations of local Hardy spaces on spaces of homogeneous type. Math. Nachr. 294, 900–955 (2021)
Hytönen, T., Kairema, A.: Systems of dyadic cubes in a doubling metric space. Colloq. Math. 126, 1–33 (2012)
Hytönen, T., Tapiola, O.: Almost Lipschitz-continuous wavelets in metric spaces via a new randomization of dyadic cubes. J. Approx. Theory 185, 12–30 (2014)
Jonsson, A.: Besov spaces on closed subsets of $${\mathbb{R}}^n$$. Trans. Am. Math. Soc. 341, 355–370 (1994)
Jonsson, A., Wallin, H.: Function spaces on subsets of $${\mathbb{R}}^n$$. Math. Reports, vol. 2. Harwood Academic Publ., London (1984)
Jonsson, A., Wallin, H.: Boundary value problems and Brownian motion on fractals. Chaos Solitons Fractals 8, 191–205 (1997)
Koskela, P., Yang, D., Zhou, Y.: A characterization of Hajłasz–Sobolev and Triebel–Lizorkin spaces via grand Littlewood–Paley functions. J. Funct. Anal. 258, 2637–2661 (2010)
Koskela, P., Yang, D., Zhou, Y.: Pointwise characterizations of Besov and Triebel–Lizorkin spaces and quasiconformal mappings. Adv. Math. 226, 3579–3621 (2011)
Müller, D., Yang, D.: A difference characterization of Besov and Triebel–Lizorkin spaces on RD-spaces. Forum Math. 21, 259–298 (2009)
Nakai, E., Yabuta, K.: Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type. Math. Japon. 46, 15–28 (1997)
Song, L., Yan, L.: Maximal function characterizations for Hardy spaces associated with nonnegative self-adjoint operators on spaces of homogeneous type. J. Evol. Equ. 18, 221–243 (2018)
Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)
Triebel, H.: Theory of Function Spaces. I, Monographs in Mathematics, vol. 78. Birkhäuser Verlag, Basel (1983)
Triebel, H.: Theory of Function Spaces. II, Monographs in Mathematics, vol. 84. Birkhäuser Verlag, Basel (1992)
Triebel, H.: Theory of Function Spaces. III, Monographs in Mathematics, vol. 100. Birkhäuser Verlag, Basel (2006)
Wallin, H.: New and old function spaces. In: Function Spaces and Applications (Lund, 1986). Lecture Notes in Mathematics, vol. 1302, pp. 99–114. Springer, Berlin (1988)
Wang, F., Han, Y., He, Z., Yang, D.: Besov and Triebel–Lizorkin spaces on spaces of homogeneous type with applications to boundedness of Calderón–Zygmund operators. Diss. Math. (2021). https://doi.org/10.4064/dm821-4-2021
Yang, D.: Frame characterizations of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type and their applications. Georgian Math. J. 9, 567–590 (2002)
Yang, D.: Localization principle of Triebel–Lizorkin spaces on spaces of homogeneous type. Rev. Mat. Complut. 17, 229–249 (2004)
Yang, D.: Some new inhomogeneous Triebel–Lizorkin spaces on metric measure spaces and their various characterizations. Studia Math. 167, 63–98 (2005)
Yang, D.: Some new Triebel–Lizorkin spaces on spaces of homogeneous type and their frame characterizations. Sci. China Ser. A 48, 12–39 (2005)
Yang, D., Lin, Y.: Spaces of Lipschitz type on metric spaces and their applications. Proc. Edinb. Math. Soc. (2) 47, 709–752 (2004)
Yang, S., Yang, D.: Atomic and maximal function characterizations of Musielak-Orlicz-Hardy spaces associated to non-negative self-adjoint operators on spaces of homogeneous type. Collect. Math. 70, 197–246 (2019)
Yang, D., Zhou, Y.: Radial maximal function characterizations of Hardy spaces on RD-spaces and their applications. Math. Ann. 346, 307–333 (2010)
Yang, D., Zhou, Y.: New properties of Besov and Triebel–Lizorkin spaces on RD-spaces. Manuscripta Math. 134, 59–90 (2011)
Zhuo, C., Sawano, Y., Yang, D.: Hardy spaces with variable exponents on RD-spaces and applications. Diss. Math. 520, 1–74 (2016)
