Difference Characterization of Besov and Triebel–Lizorkin Spaces on Spaces of Homogeneous Type

Fan Wang1, Ziyi He2, Dachun Yang1, Wen Yuan1
1Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences, Beijing Normal University, Beijing, People’s Republic of China
2School of Science, Beijing University of Posts and Telecommunications, Beijing, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alvarado, R., Mitrea, M.: Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces. A Sharp Theory. Lecture Notes in Mathematics, vol. 2142. Springer, Cham (2015)

Alvarado, R., Górka, H., Hajłasz, P.: Sobolev embedding for $$M^{1,p}$$ spaces is equivalent to a lower bound of the measure. J. Funct. Anal. 279, 108628, 39 pp (2020)

Alvarado, R., Wang, F., Yang, D., Yuan, W.: Pointwise characterization of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type. (Submitted)

Auscher, P., Hytönen, T.: Orthonormal bases of regular wavelets in spaces of homogeneous type. Appl. Comput. Harmon. Anal. 34, 266–296 (2013)

Besov, O.V., Il’in, V.P., Nikol’skiĭ, S.M.: Integralnye Predstavleniya Funktsii i Teoremy Vlozheniya, 2nd edn. Fizmatlit “Nauka”, Moscow (1996)

Bui, T.A., Duong, X.T.: Sharp weighted estimates for square functions associated to operators on spaces of homogeneous type. J. Geom. Anal. 30, 874–900 (2020)

Bui, T.A., Duong, X.T., Ly, F.K.: Maximal function characterizations for new local Hardy type spaces on spaces of homogeneous type. Trans. Am. Math. Soc. 370, 7229–7292 (2018)

Bui, T.A., Duong, X.T., Ky, L.D.: Hardy spaces associated to critical functions and applications to $$T1$$ theorems. J. Fourier Anal. Appl. 26, Article number 27, 67 pp (2020)

Bui, T.A., Duong, X.T., Ly, F.K.: Maximal function characterizations for Hardy spaces on spaces of homogeneous type with finite measure and applications. J. Funct. Anal. 278, 108423. 55 pp (2020)

Coifman, R.R., Weiss, G.: Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, (French) Étude de Certaines Intégrales Singulières. Lecture Notes in Mathematics, vol. 242. Springer, Berlin (1971)

Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)

Deng, D., Han, Y.: Harmonic Analysis on Spaces of Homogeneous Type. With a Preface by Yves Meyer. Lecture Notes in Mathematics, vol. 1966. Springer, Berlin (2009)

Duong, X.T., Yan, L.: Hardy spaces of spaces of homogeneous type. Proc. Am. Math. Soc. 131, 3181–3189 (2003)

Fu, X., Ma, T., Yang, D.: Real-variable characterizations of Musielak–Orlicz–Hardy spaces on spaces of homogeneous type. Ann. Acad. Sci. Fenn. Math. 45, 343–410 (2020)

Grigor’yan, A.: Heat kernels and function theory on metric measure spaces. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), Contemp. Math. vol. 338, pp. 143–172. Amer. Math. Soc., Providence (2003)

Grigor’yan, A., Hu, J., Lau, K.: Heat kernels on metric-measure spaces and an application to semi-linear elliptic equations. Trans. Am. Math. Soc. 355, 2065–2095 (2003)

Grafakos, L., Liu, L., Yang, D.: Vector-valued singular integrals and maximal functions on spaces of homogeneous type. Math. Scand. 104, 296–310 (2009)

Grafakos, L., Liu, L., Maldonado, D., Yang, D.: Multilinear analysis on metric spaces. Diss. Math. 497, 1–121 (2014)

Han, Y., Yang, D.: New characterizations and applications of inhomogeneous Besov and Triebel–Lizorkin spaces on homogeneous type spaces and fractals. Diss. Math. (Rozprawy Mat.) 403, 1–102 (2002)

Han, Y., Yang, D.: Some new spaces of Besov and Triebel–Lizorkin type on homogeneous spaces. Studia Math. 156, 67–97 (2003)

Han, Y., Lu, S., Yang, D.: Inhomogeneous Besov and Triebel–Lizorkin spaces on spaces of homogeneous type. Approx. Theory Appl. (N. S.) 15(3), 37–65 (1999)

Han, Y., Müller, D., Yang, D.: Littlewood–Paley characterizations for Hardy spaces on spaces of homogeneous type. Math. Nachr. 279, 1505–1537 (2006)

Han, Y., Müller, D., Yang, D.: A theory of Besov and Triebel–Lizorkin spaces on metric measure spaces modeled on Carnot–Carathéodory spaces. Abstr. Appl. Anal., Art. ID 893409, 1–250 (2008)

Han, Y., Han, Y., Li, J.: Criterion of the boundedness of singular integrals on spaces of homogeneous type. J. Funct. Anal. 271, 3423–3464 (2016)

Han, Y., Han, Y., Li, J.: Geometry and Hardy spaces on spaces of homogeneous type in the sense of Coifman and Weiss. Sci. China Math. 60, 2199–2218 (2017)

Han, Y., Li, J., Ward, L.A.: Hardy space theory on spaces of homogeneous type via orthonormal wavelet bases. Appl. Comput. Harmon. Anal. 45, 120–169 (2018)

Han, Y., Han, Y., He, Z., Li, J., Pereyra, C.: Geometric characterizations of embedding theorems: for Sobolev, Besov, and Triebel–Lizorkin spaces on spaces of homogeneous type—via orthonormal wavelets. J. Geom. Anal. (2020). https://doi.org/10.1007/s12220-020-00536-6

He, Z., Han, Y., Li, J., Liu, L., Yang, D., Yuan, W.: A complete real-variable theory of Hardy spaces on spaces of homogeneous type. J. Fourier Anal. Appl. 25, 2197–2267 (2019)

He, Z., Liu, L., Yang, D., Yuan, W.: New Calderón reproducing formulae with exponential decay on spaces of homogeneous type. Sci. China Math. 62, 283–350 (2019)

He, Z., Wang, F., Yang, D., Yuan, W.: Wavelet characterizations of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type and their applications. Appl. Comput. Harmon. Anal. 54, 176–226 (2021)

He, Z., Yang, D., Yuan, W.: Real-variable characterizations of local Hardy spaces on spaces of homogeneous type. Math. Nachr. 294, 900–955 (2021)

Hytönen, T., Kairema, A.: Systems of dyadic cubes in a doubling metric space. Colloq. Math. 126, 1–33 (2012)

Hytönen, T., Tapiola, O.: Almost Lipschitz-continuous wavelets in metric spaces via a new randomization of dyadic cubes. J. Approx. Theory 185, 12–30 (2014)

Jonsson, A.: Besov spaces on closed subsets of $${\mathbb{R}}^n$$. Trans. Am. Math. Soc. 341, 355–370 (1994)

Jonsson, A.: Brownian motion on fractals and function spaces. Math. Z. 222, 495–504 (1996)

Jonsson, A., Wallin, H.: Function spaces on subsets of $${\mathbb{R}}^n$$. Math. Reports, vol. 2. Harwood Academic Publ., London (1984)

Jonsson, A., Wallin, H.: Boundary value problems and Brownian motion on fractals. Chaos Solitons Fractals 8, 191–205 (1997)

Koskela, P., Yang, D., Zhou, Y.: A characterization of Hajłasz–Sobolev and Triebel–Lizorkin spaces via grand Littlewood–Paley functions. J. Funct. Anal. 258, 2637–2661 (2010)

Koskela, P., Yang, D., Zhou, Y.: Pointwise characterizations of Besov and Triebel–Lizorkin spaces and quasiconformal mappings. Adv. Math. 226, 3579–3621 (2011)

Müller, D., Yang, D.: A difference characterization of Besov and Triebel–Lizorkin spaces on RD-spaces. Forum Math. 21, 259–298 (2009)

Nakai, E., Yabuta, K.: Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type. Math. Japon. 46, 15–28 (1997)

Song, L., Yan, L.: Maximal function characterizations for Hardy spaces associated with nonnegative self-adjoint operators on spaces of homogeneous type. J. Evol. Equ. 18, 221–243 (2018)

Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

Triebel, H.: Theory of Function Spaces. I, Monographs in Mathematics, vol. 78. Birkhäuser Verlag, Basel (1983)

Triebel, H.: Theory of Function Spaces. II, Monographs in Mathematics, vol. 84. Birkhäuser Verlag, Basel (1992)

Triebel, H.: Theory of Function Spaces. III, Monographs in Mathematics, vol. 100. Birkhäuser Verlag, Basel (2006)

Wallin, H.: New and old function spaces. In: Function Spaces and Applications (Lund, 1986). Lecture Notes in Mathematics, vol. 1302, pp. 99–114. Springer, Berlin (1988)

Wang, F., Han, Y., He, Z., Yang, D.: Besov and Triebel–Lizorkin spaces on spaces of homogeneous type with applications to boundedness of Calderón–Zygmund operators. Diss. Math. (2021). https://doi.org/10.4064/dm821-4-2021

Yang, D.: Frame characterizations of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type and their applications. Georgian Math. J. 9, 567–590 (2002)

Yang, D.: Localization principle of Triebel–Lizorkin spaces on spaces of homogeneous type. Rev. Mat. Complut. 17, 229–249 (2004)

Yang, D.: Some new inhomogeneous Triebel–Lizorkin spaces on metric measure spaces and their various characterizations. Studia Math. 167, 63–98 (2005)

Yang, D.: Some new Triebel–Lizorkin spaces on spaces of homogeneous type and their frame characterizations. Sci. China Ser. A 48, 12–39 (2005)

Yang, D., Lin, Y.: Spaces of Lipschitz type on metric spaces and their applications. Proc. Edinb. Math. Soc. (2) 47, 709–752 (2004)

Yang, S., Yang, D.: Atomic and maximal function characterizations of Musielak-Orlicz-Hardy spaces associated to non-negative self-adjoint operators on spaces of homogeneous type. Collect. Math. 70, 197–246 (2019)

Yang, D., Zhou, Y.: Radial maximal function characterizations of Hardy spaces on RD-spaces and their applications. Math. Ann. 346, 307–333 (2010)

Yang, D., Zhou, Y.: New properties of Besov and Triebel–Lizorkin spaces on RD-spaces. Manuscripta Math. 134, 59–90 (2011)

Zhuo, C., Sawano, Y., Yang, D.: Hardy spaces with variable exponents on RD-spaces and applications. Diss. Math. 520, 1–74 (2016)

Zhou, X., Yang, D., He, Z.: A real-variable theory of Hardy–Lorentz spaces on spaces of homogeneous type. Anal. Geom. Metr. Spaces 8, 182–260 (2020)