Diethyldithiocarbamate inhibits in vivo Cu,Zn-superoxide dismutase and perturbs free radical processes in the yeast Saccharomyces cerevisiae cells
Tóm tắt
Từ khóa
Tài liệu tham khảo
Galiazzo, 1993, Regulation of Cu,Zn- and Mn-surepoxide dismutase transcription in Saccharomyces cerevisiae, FEBS Lett., 315, 197, 10.1016/0014-5793(93)81162-S
Longo, 1996, Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae, J. Biol. Chem., 271, 12275, 10.1074/jbc.271.21.12275
Nedeva, 2004, Cu/Zn superoxide dismutase in yeast mitochondria—a general phenomenon, FEBS Lett., 203, 19
Sturz, 2001, A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria, J. Biol. Chem., 276, 38084, 10.1074/jbc.M105296200
Weisinger, 1973, Mitochondrial superoxide dismutase, J. Biol. Chem., 248, 4793, 10.1016/S0021-9258(19)43735-6
Srinivasan, 2000, Yeast lacking superoxide dismutase(s) show elevated levels of “free iron” as measured by whole cell electron paramagnetic resonance, J. Biol. Chem., 275, 29187, 10.1074/jbc.M004239200
Park, 1998, The cytoplasmic Cu,Zn superoxide dismutase of Saccharomyces cerevisiae is required for resistance to freeze–thaw stress, J. Biol. Chem., 273, 22921, 10.1074/jbc.273.36.22921
Slekar, 1996, The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection, J. Biol. Chem., 271, 28831, 10.1074/jbc.271.46.28831
Wawryn, 2002, Effect of superoxide dismutase deficiency on the life span of the yeast Saccharomyces cerevisiae. An oxygen-independent role of Cu,Zn superoxide dismutase, Biochim. Biophys. Acta, 1570, 199, 10.1016/S0304-4165(02)00197-6
Benov, 1996, Functional significance of the Cu,ZnSOD in Escherichia coli, Arch. Biochem. Biophys., 327, 249, 10.1006/abbi.1996.0117
Cocco, 1981, Re-examination of the reaction of diethyldithiocarbamate with the copper of superoxide dismutase, J. Biol. Chem., 256, 8983, 10.1016/S0021-9258(19)52496-6
Semchyshyn, 2005, Possible reasons for difference in sensitivity to oxygen of two Escherichia coli strains, Biochemistry (Moscow), 70, 424, 10.1007/s10541-005-0132-1
Lushchak, 2001, Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation, Am. J. Physiol., 280, R100
Lushchak, 2005, Possible role of superoxide dismutases in the yeast Saccharomyces cerevisiae under respiratory conditions, Arch. Biochem. Biophys., 441, 35, 10.1016/j.abb.2005.06.010
Lenz, 1989, Determination of carbonyl groups in oxidatively modified of proteins by reduction with tritiated sodium borohydride, Anal. Biochem., 177, 419, 10.1016/0003-2697(89)90077-8
Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3
McCord, 1997, The importance of oxidant-antioxidant balance, 1
McCord, 2005, SOD, oxidative stress and human pathologies: a brief history and a future vision, Biomed. Pharmacother., 59, 139, 10.1016/j.biopha.2005.03.005
Offer, 2000, The pro-oxidative activity of SOD and nitroxide SOD mimics, FASEB J., 14, 1215, 10.1096/fasebj.14.9.1215
Pereira, 2003, Targets of oxidative stress in yeast sod mutants, Biochim. Biophys. Acta, 1620, 245, 10.1016/S0304-4165(03)00003-5
Yim, 1998, Pro-oxidant activity of Cu,Zn-superoxide dismutase, Age, 21, 91, 10.1007/s11357-998-0013-9
Pereira, 2001, Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae, BMC Microbiol., 1, 11, 10.1186/1471-2180-1-11
Lushchak, 2005, Catalases protect cellular proteins from oxidative modification in Saccharomyces cerevisiae, Cell Biol. Intern., 29, 187, 10.1016/j.cellbi.2004.11.001
Outten, 2003, A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae, EMBO J., 22, 2015, 10.1093/emboj/cdg211
Demple, 1991, Regulation of bacterial oxidative stress genes, Annu. Rev. Genet., 25, 315, 10.1146/annurev.ge.25.120191.001531