Những xu hướng dinh dưỡng và sự suy giảm sức khỏe sinh sản ở nam giới

Hormones - Tập 22 - Trang 165-197 - 2023
Joseph Whittaker1
1The School of Allied Health and Community, University of Worcester, Worcester, UK

Tóm tắt

Trong thế kỷ hai mươi, sức khỏe sinh sản của nam giới đã chịu sự suy giảm đáng kể, điều này được chứng minh qua sự giảm sút số lượng tinh trùng và mức testosterone, cũng như sự gia tăng các bệnh sinh sản. Đồng thời, tỷ lệ mắc các bệnh mãn tính như béo phì, tiểu đường và hội chứng chuyển hóa đã gia tăng đáng kể. Sức khỏe chuyển hóa và sinh sản có sự liên kết chặt chẽ, cho thấy rằng các xu hướng tương ứng của chúng có sự liên quan và, với khoảng thời gian của những xu hướng này, các yếu tố môi trường chứ không phải yếu tố di truyền có khả năng là nguyên nhân chính. Quá trình công nghiệp hóa, bắt đầu ở Châu Âu giữa thế kỷ mười tám, đã dẫn đến những thay đổi sâu rộng trong chế độ ăn uống, lối sống và môi trường của chúng ta, nhiều trong số đó là các yếu tố gây ra sự gia tăng các bệnh mãn tính. Công nghiệp hóa dẫn đến sự chuyển đổi dinh dưỡng từ chế độ ăn nông nghiệp chưa qua chế biến sang chế độ ăn hiện đại chế biến sẵn, bao gồm sự gia tăng đường, dầu thực vật, thực phẩm chế biến siêu chế biến, axit linoleic, chất béo chuyển hóa và tổng năng lượng. Sự chuyển đổi chế độ ăn này đã gây ra nhiều tác động bất lợi đến sức khỏe chuyển hóa và sinh sản, với đặc trưng là viêm mãn tính, stress oxy hóa và đề kháng insulin. Hơn nữa, những tác động này dường như nhân lên qua các thế hệ tiếp theo thông qua di truyền biểu sinh. Sự sinh sản của nam giới bị ảnh hưởng rõ rệt bởi béo phì và tiểu đường, với sự gia tăng tổng năng lượng qua việc tiêu thụ thực phẩm chế biến có thể được coi là yếu tố chính thúc đẩy đại dịch béo phì và tiểu đường. Trái lại, thực phẩm nguyên chất giàu vi chất dinh dưỡng và phytonutrient hỗ trợ sự sinh sản của nam giới và cân nặng cơ thể khỏe mạnh. Do đó, nam giới muốn tối đa hóa khả năng sinh sản của mình nên xem xét thực hiện những thay đổi tích cực trong chế độ ăn uống, chẳng hạn như thay thế thực phẩm chế biến sẵn bằng thực phẩm chưa qua chế biến hỗ trợ sức khỏe chuyển hóa và sinh sản.

Từ khóa


Tài liệu tham khảo

Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM, Toppari J, Andersson A-M, Eisenberg ML, Jensen TK, Jørgensen N, Swan SH, Sapra KJ, Ziebe S, Priskorn L, Juul A (2016) Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev 96:55–97. https://doi.org/10.1152/physrev.00017.2015 Xing J-S, Bai Z-M (2018) Is testicular dysgenesis syndrome a genetic, endocrine, or environmental disease, or an unexplained reproductive disorder? Life Sci 194:120–129. https://doi.org/10.1016/j.lfs.2017.11.039 Skakkebæk NE, Lindahl-Jacobsen R, Levine H, Andersson A-M, Jørgensen N, Main KM, Lidegaard Ø, Priskorn L, Holmboe SA, Bräuner EV, Almstrup K, Franca LR, Znaor A, Kortenkamp A, Hart RJ, Juul A (2021) Environmental factors in declining human fertility. Nat Rev Endocrinol 18:139–157. https://doi.org/10.1038/s41574-021-00598-8 Schnack TH, Poulsen G, Myrup C, Wohlfahrt J, Melbye M (2010) Familial coaggregation of cryptorchidism, hypospadias, and testicular germ cell cancer: a nationwide cohort study. J Natl Cancer Inst 102:187–192. https://doi.org/10.1093/jnci/djp457 Bergström R, Adami HO, Möhner M, Zatonski W, Storm H, Ekbom A, Tretli S, Teppo L, Akre O, Hakulinen T (1996) Increase in testicular cancer incidence in six European countries: a birth cohort phenomenon. J Natl Cancer Inst 88:727–733. https://doi.org/10.1093/jnci/88.11.727 Whittaker J, Wu K (2021) Low-fat diets and testosterone in men: systematic review and meta-analysis of intervention studies. J Steroid Biochem Mol Biol 210:105878. https://doi.org/10.1016/j.jsbmb.2021.105878 Corona G, Rastrelli G, Monami M, Saad F, Luconi M, Lucchese M, Facchiano E, Sforza A, Forti G, Mannucci E, Maggi M (2013) Body weight loss reverts obesity-associated hypogonadotropic hypogonadism: a systematic review and meta-analysis. Eur J Endocrinol 168:829–843. https://doi.org/10.1530/EJE-12-0955 Caruso P, Caputo M, Cirillo P, Scappaticcio L, Longo M, Maiorino MI, Bellastella G, Esposito K (2020) Effects of Mediterranean diet on semen parameters in healthy young adults: a randomized controlled trial. Minerva Endocrinol 45:280–287. https://doi.org/10.23736/S0391-1977.20.03362-3 O’Rourke KH, Williamson JG (2017) The spread of modern industry to the periphery since 1871. Oxford University Press, Oxford Levine JA (2015) Sick of sitting. Diabetologia 58:1751–1758. https://doi.org/10.1007/s00125-015-3624-6 Monteiro CA, Moubarac J-C, Cannon G, Ng SW, Popkin B (2013) Ultra-processed products are becoming dominant in the global food system. Obes Rev an Off J Int Assoc Study Obes 14(Suppl 2):21–28. https://doi.org/10.1111/obr.12107 Brenner S, Jones J, Rutanen Whaley R, Parker W, Flinn M, Muehlenbein M (2015) Evolutionary mismatch and chronic psychological stress. J Evol Med 3:1–11. https://doi.org/10.4303/jem/235885 Yetish G, Kaplan H, Gurven M, Wood B, Pontzer H, Manger PR, Wilson C, McGregor R, Siegel JM (2015) Natural sleep and its seasonal variations in three pre-industrial societies. Curr Biol 25:2862–2868. https://doi.org/10.1016/j.cub.2015.09.046 Carrera-Bastos P, Fontes-Villalba M, O’Keefe JH, Lindeberg S, Cordain L (2011) The western diet and lifestyle and diseases of civilization. Res Reports Clin Cardiol 2:15–35. https://doi.org/10.2147/RRCC.S16919 Ehrlich PR, Blumstein DT (2018) The great mismatch. Bioscience 68:844–846. https://doi.org/10.1093/biosci/biy110 Manus MB (2018) Evolutionary mismatch. Evol Med Public Health 2018:190–191 Popkin BM, Adair LS, Ng SW (2012) Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 70:3–21. https://doi.org/10.1111/j.1753-4887.2011.00456.x Popkin BM (2015) Nutrition transition and the global diabetes epidemic. Curr Diab Rep 15:64. https://doi.org/10.1007/s11892-015-0631-4 Misra A, Khurana L (2008) Obesity and the metabolic syndrome in developing countries. J Clin Endocrinol Metab 93:S9-30. https://doi.org/10.1210/jc.2008-1595 Salas-Huetos A, James ER, Aston KI, Jenkins TG, Carrell DT (2019) Diet and sperm quality: nutrients, foods and dietary patterns. Reprod Biol 19:219–224. https://doi.org/10.1016/j.repbio.2019.07.005 Nassan FL, Chavarro JE, Tanrikut C (2018) Diet and men’s fertility: does diet affect sperm quality? Fertil Steril 110:570–577. https://doi.org/10.1016/j.fertnstert.2018.05.025 Carlsen E, Giwercman A, Keiding N, Skakkebaek NE (1992) Evidence for decreasing quality of semen during past 50 years. BMJ 305:609–613. https://doi.org/10.1136/bmj.305.6854.609 Swan SH, Elkin EP, Fenster L (2000) The question of declining sperm density revisited: an analysis of 101 studies published 1934–1996. Environ Health Perspect 108:961–966. https://doi.org/10.1289/ehp.00108961 Sengupta P, Dutta S, Krajewska-Kulak E (2017) The disappearing sperms: analysis of reports published between 1980 and 2015. Am J Mens Health 11:1279–1304. https://doi.org/10.1177/1557988316643383 Levine H, Jørgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Jolles M, Pinotti R, Swan SH (2022) Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Hum Reprod Update. https://doi.org/10.1093/humupd/dmac035 Rosa-Villagrán L, Barrera N, Montes J, Riso C, Sapiro R (2021) Decline of semen quality over the last 30 years in Uruguay. Basic Clin Androl 31:1–10. https://doi.org/10.1186/S12610-021-00128-6/TABLES/4 Huang C, Li B, Xu K, Liu D, Hu J, Yang Y, Nie H, Fan L, Zhu W (2017) Decline in semen quality among 30,636 young Chinese men from 2001 to 2015. Fertil Steril 107:83-88.e2. https://doi.org/10.1016/j.fertnstert.2016.09.035 Feki NC, Abid N, Rebai A, Sellami A, Ben AB, Guermazi M, Bahloul A, Rebai T, Ammar LK (2009) Semen quality decline among men in infertile relationships: experience over 12 years in the South of Tunisia. J Androl 30:541–547. https://doi.org/10.2164/jandrol.108.005959 Mishra P, Negi MPS, Srivastava M, Singh K, Rajender S (2018) Decline in seminal quality in Indian men over the last 37 years. Reprod Biol Endocrinol 16:103. https://doi.org/10.1186/s12958-018-0425-z Geoffroy-Siraudin C, Dieudonné Loundou A, Romain F, Achard V, Courbière B, Perrard MH, Durand P, Guichaoua MR (2012) Decline of semen quality among 10 932 males consulting for couple infertility over a 20-year period in Marseille. France Asian J Androl 14:584. https://doi.org/10.1038/AJA.2011.173 Chen Z, Isaacson KB, Toth TL, Godfrey-Bailey L, Schiff I, Hauser R (2003) Temporal trends in human semen parameters in New England in the United States, 1989–2000. Arch Androl 49:369–374. https://doi.org/10.1080/0145010390219700 Palani A, Sengupta P, Agarwal A, Henkel R (2020) Geographical differences in semen characteristics: comparing semen parameters of infertile men of the United States and Iraq. Andrologia 52:e13519. https://doi.org/10.1111/and.13519 Travison TG, Araujo AB, O’Donnell AB, Kupelian V, McKinlay JB (2007) A population-level decline in serum testosterone levels in American men. J Clin Endocrinol Metab 92:196–202. https://doi.org/10.1210/jc.2006-1375 Laranja WW, Riccetto E, Amaro MP, Reis LO (2020) Age-independent secular testosterone populational trends among Brazilian males. Int Urol Nephrol 52:1199–1202. https://doi.org/10.1007/s11255-020-02425-x Nyante SJ, Graubard BI, Li Y, McQuillan GM, Platz EA, Rohrmann S, Bradwin G, McGlynn KA (2012) Trends in sex hormone concentrations in US males: 1988–1991 to 1999–2004. Int J Androl 35:456–466. https://doi.org/10.1111/j.1365-2605.2011.01230.x Auerbach JM, Moghalu OI, Das R, Horns J, Campbell A, Hotaling J, Pastuszak AW (2021) Evaluating incidence, prevalence, and treatment trends in adult men with hypogonadism in the United States. Int J Impot Res. https://doi.org/10.1038/s41443-021-00471-2 Mazur A, Westerman R, Mueller U (2013) Is rising obesity causing a secular (age-independent) decline in testosterone among American men? PLoS One 8:e76178. https://doi.org/10.1371/journal.pone.0076178 Smith LB, Walker WH (2014) The regulation of spermatogenesis by androgens. Semin Cell Dev Biol 30:2–13. https://doi.org/10.1016/j.semcdb.2014.02.012 Yang B, Sun H, Wan Y, Wang H, Qin W, Yang L, Zhao H, Yuan J, Yao B (2012) Associations between testosterone, bone mineral density, vitamin D and semen quality in fertile and infertile Chinese men. Int J Androl 35:783–792. https://doi.org/10.1111/j.1365-2605.2012.01287.x Andersson A-M, Jørgensen N, Frydelund-Larsen L, Rajpert-De Meyts E, Skakkebaek NE (2004) Impaired Leydig cell function in infertile men: a study of 357 idiopathic infertile men and 318 proven fertile controls. J Clin Endocrinol Metab 89:3161–3167. https://doi.org/10.1210/jc.2003-031786 Bobjer J, Bogefors K, Isaksson S, Leijonhufvud I, Åkesson K, Giwercman YL, Giwercman A (2016) High prevalence of hypogonadism and associated impaired metabolic and bone mineral status in subfertile men. Clin Endocrinol (Oxf) 85:189–195. https://doi.org/10.1111/cen.13038 Ferlin A, Garolla A, Ghezzi M, Selice R, Palego P, Caretta N, Di Mambro A, Valente U, De Rocco PM, Dipresa S, Sartori L, Plebani M, Foresta C (2021) Sperm count and hypogonadism as markers of general male health. Eur Urol Focus 7:205–213. https://doi.org/10.1016/j.euf.2019.08.001 Jørgensen N, Joensen UN, Toppari J, Punab M, Erenpreiss J, Zilaitiene B, Paasch U, Salzbrunn A, Fernandez MF, Virtanen HE, Matulevicius V, Olea N, Jensen TK, Petersen JH, Skakkebæk NE, Andersson A-M (2016) Compensated reduction in Leydig cell function is associated with lower semen quality variables: a study of 8182 European young men. Hum Reprod 31:947–957. https://doi.org/10.1093/humrep/dew021 Walsh TJ, Shores MM, Fox AE, Moore KP, Forsberg CW, Kinsey CE, Heckbert SR, Zeliadt S, Thompson ML, Smith NL, Matsumoto AM (2015) Recent trends in testosterone testing, low testosterone levels, and testosterone treatment among Veterans. Andrology 3:287–292. https://doi.org/10.1111/andr.12014 Lokeshwar SD, Patel P, Fantus RJ, Halpern J, Chang C, Kargi AY, Ramasamy R (2021) Decline in serum testosterone levels among adolescent and young adult men in the USA. Eur Urol Focus 7:886–889. https://doi.org/10.1016/j.euf.2020.02.006 Andersson A-M, Jensen TK, Juul A, Petersen JH, Jørgensen T, Skakkebaek NE (2007) Secular decline in male testosterone and sex hormone binding globulin serum levels in Danish population surveys. J Clin Endocrinol Metab 92:4696–4705. https://doi.org/10.1210/jc.2006-2633 Trimpou P, Lindahl A, Lindstedt G, Oleröd G, Wilhelmsen L, Landin-Wilhelmsen K (2012) Secular trends in sex hormones and fractures in men and women. Eur J Endocrinol 166:887–895. https://doi.org/10.1530/EJE-11-0808 Perheentupa A, Mäkinen J, Laatikainen T, Vierula M, Skakkebaek NE, Andersson A-M, Toppari J (2013) A cohort effect on serum testosterone levels in Finnish men. Eur J Endocrinol 168:227–233. https://doi.org/10.1530/EJE-12-0288 Chodick G, Epstein S, Shalev V (2020) Secular trends in testosterone- findings from a large state-mandate care provider. Reprod Biol Endocrinol 18:19. https://doi.org/10.1186/s12958-020-00575-2 Grumet RF, Macmahon B (1958) Trends in mortality from neoplasms of the testis. Cancer 11:790–797. https://doi.org/10.1002/1097-0142(195807/08)11:4%3c790::aid-cncr2820110417%3e3.0.co;2-f Paulozzi LJ (1999) International trends in rates of hypospadias and cryptorchidism. Environ Health Perspect 107:297–302. https://doi.org/10.1289/ehp.99107297 Springer A, van den Heijkant M, Baumann S (2016) Worldwide prevalence of hypospadias. J Pediatr Urol 12:152.e1-152.e7. https://doi.org/10.1016/j.jpurol.2015.12.002 Chul Kim S, Kyoung Kwon S, Pyo Hong Y (2011) Trends in the incidence of cryptorchidism and hypospadias of registry-based data in Korea: a comparison between industrialized areas of petrochemical estates and a non-industrialized area. Asian J Androl 13:715–718. https://doi.org/10.1038/aja.2010.53 Le Moal J, Goria S, Guillet A, Rigou A, Chesneau J (2021) Time and spatial trends of operated cryptorchidism in France and environmental hypotheses: a nationwide study from 2002 to 2014. Hum Reprod 36:1383–1394. https://doi.org/10.1093/humrep/deaa378 Koch T, Bräuner EV, Busch AS, Hickey M, Juul A (2020) Marked increase in incident gynecomastia: a 20-year national registry study, 1998 to 2017. J Clin Endocrinol Metab 105:dgaa440. https://doi.org/10.1210/clinem/dgaa440 Sansone A, Romanelli F, Sansone M, Lenzi A, Di Luigi L (2017) Gynecomastia and hormones. Endocrine 55:37–44. https://doi.org/10.1007/s12020-016-0975-9 Serrano T, Chevrier C, Multigner L, Cordier S, Jégou B (2013) International geographic correlation study of the prevalence of disorders of male reproductive health. Hum Reprod 28:1974–1986. https://doi.org/10.1093/humrep/det111 Stearns PN (2021) The industrial revolution in world history, 5th edn. Routledge, New York City Galor O (2011) Unified growth theory. Princeton University Press, Woodstock (UK) Guinnane TW (2011) The historical fertility transition: a guide for economists. J Econ Lit 49:589–614. https://doi.org/10.1257/JEL.49.3.589 Amy J-J, Thiery M (2015) The condom: a turbulent history. Eur J Contracept Reprod Health Care 20:387–402. https://doi.org/10.3109/13625187.2015.1050716 Christin-Maitre S (2013) History of oral contraceptive drugs and their use worldwide. Best Pract Res Clin Endocrinol Metab 27:3–12. https://doi.org/10.1016/j.beem.2012.11.004 Pavard B (2019) The right to know? The politics of information about contraception in France (1950s–80s). Med Hist 63:173–188. https://doi.org/10.1017/mdh.2019.4 Government of Ireland (2022) Criminal law amendment act, 1935, section 17. https://www.irishstatutebook.ie/eli/1935/act/6/section/17/enacted/en/html#sec17. Accessed 1 April 2022 Government of Ireland (2022) Health (family planning) act, 1979. https://www.irishstatutebook.ie/eli/1979/act/20/enacted/en/html. Accessed 1 April 2022 Government of the United Kingdom (2022) Offences against the person act 1861. https://www.legislation.gov.uk/ukpga/Vict/24-25/100/contents. Accessed 1 April 2022 Government of Ireland (2022) Health (regulation of termination of pregnancy) act 2018. https://www.irishstatutebook.ie/eli/2018/act/31. Accessed 1 April 2022 Langer WL (1975) The origins of the birth control movement in England in the early nineteenth century. J Interdiscip Hist 5:669–686. https://doi.org/10.2307/202864 Simms M (1978) Parliament and birth control in the 1920s. J R Coll Gen Pract 28:83–88 Gapminder (2015) Babies per woman (total fertility rate): version 6. https://www.gapminder.org/data/documentation/gd008/. Accessed 18 June 2022 Gapminder (2017) Babies per woman (total fertility rate): version 12. https://www.gapminder.org/data/documentation/gd008/. Accessed 18 June 2022 United Nations Department of Economic and Social Affairs (2019) World population prospects 2019: standard projections: annual and single age data: annual demographic indicators. https://population.un.org/wpp2019/Download/Standard/Interpolated/. Accessed 21 March 2022 James WH (1982) Second survey of secular trends in twinning rates. J Biosoc Sci 14:481–497. https://doi.org/10.1017/s0021932000014346 Pison G, Monden C, Smits J (2015) Twinning rates in developed countries: trends and explanations. Popul Dev Rev 41:629–649. https://doi.org/10.1111/j.1728-4457.2015.00088.x Eriksson AW, Fellman J (2007) Temporal trends in the rates of multiple maternities in England and Wales. Twin Res Hum Genet 10:626–632. https://doi.org/10.1375/twin.10.4.626 Fellman J, Eriksson AW (2003) Temporal differences in the regional twinning rates in Sweden after 1750. Twin Res 6:183–191. https://doi.org/10.1375/136905203765693834 Fellman J, Eriksson AW (2005) Variations in the maternal age effect on twinning rates: the Nordic experience. Twin Res Hum Genet 8:515–523. https://doi.org/10.1375/183242705774310178 Fellman J, Eriksson AW (2005) The convergence of the regional twinning rates in Sweden, 1751–1960. Twin Res Hum Genet 8:163–172. https://doi.org/10.1375/1832427053738845 Eriksson AW, Fellman J (1973) Differences in the twinning trends between Finns and Swedes. Am J Hum Genet 25:141–151 Olsen J, Knudsen LB (1986) Twinning rates by residence in Denmark 1978 to 1982. Scand J Soc Med 14:147–150. https://doi.org/10.1177/140349488601400307 Wyns C, De Geyter C, Calhaz-Jorge C, Kupka MS, Motrenko T, Smeenk J, Bergh C, Tandler-Schneider A, Rugescu IA, Goossens V (2022) ART in Europe, 2018: results generated from European registries by ESHRE. Hum Reprod Open 2022:hoac022. https://doi.org/10.1093/hropen/hoac022 Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, de Mouzon J, Sokol R, Rienzi L, Sunde A, Schmidt L, Cooke ID, Simpson JL, van der Poel S (2017) The international glossary on infertility and fertilitycare, 2017. Hum Reprod 32:1786–1801. https://doi.org/10.1093/humrep/dex234 NCD Risk Factor Collaboration (2017) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 390:2627–2642. https://doi.org/10.1016/S0140-6736(17)32129-3 Helmchen LA, Henderson RM (2004) Changes in the distribution of body mass index of white US men, 1890–2000. Ann Hum Biol 31:174–181. https://doi.org/10.1080/03014460410001663434 Nakayama K, Inaba Y (2019) Genetic variants influencing obesity-related traits in Japanese population. Ann Hum Biol 46:298–304. https://doi.org/10.1080/03014460.2019.1644373 Furusawa T, Naka I, Yamauchi T, Natsuhara K, Kimura R, Nakazawa M, Ishida T, Inaoka T, Matsumura Y, Ataka Y, Nishida N, Tsuchiya N, Ohtsuka R, Ohashi J (2010) The Q223R polymorphism in LEPR is associated with obesity in Pacific Islanders. Hum Genet 127:287–294. https://doi.org/10.1007/s00439-009-0768-9 US Central Intelligence Agency (2021) The CIA world factbook 2021–2022. Skyhorse Publishing, New York Fischer SR (2013) A history of the Pacific Islands, 2nd edn. Palgrave Macmillan, Basingstoke Public Health England (2014) Adult obesity and type 2 diabetes. Public Health England, London Verma S, Hussain ME (2017) Obesity and diabetes: an update. Diabetes Metab Syndr 11:73–79. https://doi.org/10.1016/j.dsx.2016.06.017 NCD Risk Factor Collaboration (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387:1513–1530. https://doi.org/10.1016/S0140-6736(16)00618-8 Xu G, Liu B, Sun Y, Du Y, Snetselaar LG, Hu FB, Bao W (2018) Prevalence of diagnosed type 1 and type 2 diabetes among US adults in 2016 and 2017: population based study. BMJ 362:k1497. https://doi.org/10.1136/bmj.k1497 Spiegelman M, Marks HH (1946) Age and sex variations in the prevalence and onset of diabetes mellitus. Am J Public Health Nations Health 36:26–33 US Centers for Disease Control and Prevention: Division of Diabetes Translation (2017) Long-term trends in diabetes. US Centers for Disease Control and Prevention, Atlanta, Georgia Lindeberg S (2010) Food and western disease: health and nutrition from an evolutionary perspective. Wiley-Blackwell, Chichester Ranasinghe P, Mathangasinghe Y, Jayawardena R, Hills AP, Misra A (2017) Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: a systematic review. BMC Public Health 17:101. https://doi.org/10.1186/s12889-017-4041-1 Lorenzo C, Williams K, Hunt KJ, Haffner SM (2006) Trend in the prevalence of the metabolic syndrome and its impact on cardiovascular disease incidence: the San Antonio Heart Study. Diabetes Care 29:625–630. https://doi.org/10.2337/diacare.29.03.06.dc05-1755 Hirode G, Wong RJ (2020) Trends in the prevalence of metabolic syndrome in the United States, 2011–2016. JAMA 323:2526–2528. https://doi.org/10.1001/jama.2020.4501 Huang PL (2009) A comprehensive definition for metabolic syndrome. Dis Model Mech 2:231–237. https://doi.org/10.1242/dmm.001180 NCD Risk Factor Collaboration (2021) Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 398:957–980. https://doi.org/10.1016/S0140-6736(21)01330-1 Johansson S, Wilhelmsen L, Lappas G, Rosengren A (2003) High lipid levels and coronary disease in women in Göteborg-outcome and secular trends: a prospective 19 year follow-up in the BEDA*study. Eur Heart J 24:704–716. https://doi.org/10.1016/s0195-668x(02)00811-4 Juonala M, Viikari JSA, Hutri-Kähönen N, Pietikäinen M, Jokinen E, Taittonen L, Marniemi J, Rönnemaa T, Raitakari OT (2004) The 21-year follow-up of the cardiovascular risk in young Finns study: risk factor levels, secular trends and east-west difference. J Intern Med 255:457–468. https://doi.org/10.1111/j.1365-2796.2004.01308.x Carroll MD, Lacher DA, Sorlie PD, Cleeman JI, Gordon DJ, Wolz M, Grundy SM, Johnson CL (2005) Trends in serum lipids and lipoproteins of adults, 1960–2002. JAMA 294:1773–1781. https://doi.org/10.1001/jama.294.14.1773 Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64:73–84. https://doi.org/10.1002/hep.28431 Ge X, Zheng L, Wang M, Du Y, Jiang J (2020) Prevalence trends in non-alcoholic fatty liver disease at the global, regional and national levels, 1990–2017: a population-based observational study. BMJ Open 10:e036663. https://doi.org/10.1136/bmjopen-2019-036663 Salas-Huetos A, Maghsoumi-Norouzabad L, James ER, Carrell DT, Aston KI, Jenkins TG, Becerra-Tomás N, Javid AZ, Abed R, Torres PJ, Luque EM, Ramírez ND, Martini AC, Salas-Salvadó J (2021) Male adiposity, sperm parameters and reproductive hormones: an updated systematic review and collaborative meta-analysis. Obes Rev an Off J Int Assoc Study Obes 22:e13082. https://doi.org/10.1111/obr.13082 Wei Y, Chen Q, Qian W (2018) Effect of bariatric surgery on semen parameters: a systematic review and meta-analysis. Med Sci Monit Basic Res 24:188–197. https://doi.org/10.12659/MSMBR.910862 Andersen E, Juhl CR, Kjøller ET, Lundgren JR, Janus C, Dehestani Y, Saupstad M, Ingerslev LR, Duun OM, Jensen SBK, Holst JJ, Stallknecht BM, Madsbad S, Torekov SS, Barrès R (2022) Sperm count is increased by diet-induced weight loss and maintained by exercise or GLP-1 analogue treatment: a randomized controlled trial. Hum Reprod 37:1414–1422. https://doi.org/10.1093/humrep/deac096 Mir J, Franken D, Andrabi SW, Ashraf M, Rao K (2018) Impact of weight loss on sperm DNA integrity in obese men. Andrologia. https://doi.org/10.1111/and.12957 Campbell JM, Lane M, Owens JA, Bakos HW (2015) Paternal obesity negatively affects male fertility and assisted reproduction outcomes: a systematic review and meta-analysis. Reprod Biomed Online 31:593–604. https://doi.org/10.1016/j.rbmo.2015.07.012 Leisegang K, Sengupta P, Agarwal A, Henkel R (2021) Obesity and male infertility: mechanisms and management. Andrologia 53:e13617. https://doi.org/10.1111/and.13617 Lerro CC, McGlynn KA, Cook MB (2010) A systematic review and meta-analysis of the relationship between body size and testicular cancer. Br J Cancer 103:1467–1474. https://doi.org/10.1038/sj.bjc.6605934 Corona G, Monami M, Rastrelli G, Aversa A, Sforza A, Lenzi A, Forti G, Mannucci E, Maggi M (2011) Type 2 diabetes mellitus and testosterone: a meta-analysis study. Int J Androl 34:528–540. https://doi.org/10.1111/j.1365-2605.2010.01117.x Yao Q-M, Wang B, An X-F, Zhang J-A, Ding L (2018) Testosterone level and risk of type 2 diabetes in men: a systematic review and meta-analysis. Endocr Connect 7:220–231. https://doi.org/10.1530/EC-17-0253 Li S-Y, Zhao Y-L, Yang Y-F, Wang X, Nie M, Wu X-Y, Mao J-F (2020) Metabolic effects of testosterone replacement therapy in patients with type 2 diabetes mellitus or metabolic syndrome: a meta-analysis. Int J Endocrinol 2020:4732021. https://doi.org/10.1155/2020/4732021 Hu Y, Ding B, Shen Y, Yan R-N, Li F-F, Sun R, Jing T, Lee K-O, Ma J-H (2021) Rapid changes in serum testosterone in men with newly diagnosed type 2 diabetes with intensive insulin and metformin. Diabetes Care 44:1059–1061. https://doi.org/10.2337/dc20-1558 Zhong O, Ji L, Wang J, Lei X, Huang H (2021) Association of diabetes and obesity with sperm parameters and testosterone levels: a meta-analysis. Diabetol Metab Syndr 13:109. https://doi.org/10.1186/s13098-021-00728-2 Morgante G, Tosti C, Orvieto R, Musacchio MC, Piomboni P, De Leo V (2011) Metformin improves semen characteristics of oligo-terato-asthenozoospermic men with metabolic syndrome. Fertil Steril 95:2150–2152. https://doi.org/10.1016/j.fertnstert.2010.12.009 Dandona P, Dhindsa S, Ghanim H, Saad F (2021) Mechanisms underlying the metabolic actions of testosterone in humans: a narrative review. Diabetes Obes Metab 23:18–28. https://doi.org/10.1111/dom.14206 Jangir RN, Jain GC (2014) Diabetes mellitus induced impairment of male reproductive functions: a review. Curr Diabetes Rev 10:147–157. https://doi.org/10.2174/1573399810666140606111745 Agledahl I, Skjaerpe P-A, Hansen J-B, Svartberg J (2008) Low serum testosterone in men is inversely associated with non-fasting serum triglycerides: the Tromsø study. Nutr Metab Cardiovasc Dis 18:256–262. https://doi.org/10.1016/j.numecd.2007.01.014 Zhang N, Zhang H, Zhang X, Zhang B, Wang F, Wang C, Zhao M, Yu C, Gao L, Zhao J, Guan Q (2014) The relationship between endogenous testosterone and lipid profile in middle-aged and elderly Chinese men. Eur J Endocrinol 170:487–494. https://doi.org/10.1530/EJE-13-0802 de Neergaard R, Nielsen JE, Jørgensen A, Toft BG, Goetze JP, Jørgensen N (2018) Positive association between cholesterol in human seminal plasma and sperm counts: results from a cross-sectional cohort study and immunohistochemical investigations. Andrology 6:817–828. https://doi.org/10.1111/andr.12532 Liu C-Y, Chou Y-C, Lin S-H, Wu S-T, Cha T-L, Chen H-I, Tsao C-W (2017) Serum lipid profiles are associated with semen quality. Asian J Androl 19:633–638. https://doi.org/10.4103/1008-682X.195240 Guo D, Li S, Behr B, Eisenberg ML (2017) Hypertension and male fertility. World J Mens Health 35:59–64. https://doi.org/10.5534/wjmh.2017.35.2.59 Torkler S, Wallaschofski H, Baumeister SE, Völzke H, Dörr M, Felix S, Rettig R, Nauck M, Haring R (2011) Inverse association between total testosterone concentrations, incident hypertension and blood pressure. Aging Male Off J Int Soc Study Aging Male 14:176–182. https://doi.org/10.3109/13685538.2010.529194 Colli LG, Belardin LB, Echem C, Akamine EH, Antoniassi MP, Andretta RR, Mathias LS, Rodrigues SFP, Bertolla RP, de Carvalho MHC (2019) Systemic arterial hypertension leads to decreased semen quality and alterations in the testicular microcirculation in rats. Sci Rep 9:11047. https://doi.org/10.1038/s41598-019-47157-w Li Y, Liu L, Wang B, Chen D, Wang J (2015) Nonalcoholic fatty liver disease and alteration in semen quality and reproductive hormones. Eur J Gastroenterol Hepatol 27:1069–1073. https://doi.org/10.1097/MEG.0000000000000408 Kim S, Kwon H, Park J-H, Cho B, Kim D, Oh S-W, Lee CM, Choi H-C (2012) A low level of serum total testosterone is independently associated with nonalcoholic fatty liver disease. BMC Gastroenterol 12:69. https://doi.org/10.1186/1471-230X-12-69 Kiple KF, Ornelas KC (2000) The Cambridge history of world food. Cambridge University Press, Cambridge US Census Bureau (2022) Statistical abstracts series. https://www.census.gov/library/publications/time-series/statistical_abstracts.html. Accessed 19 June 2022 Te Morenga L, Mallard S, Mann J (2012) Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 346:e7492. https://doi.org/10.1136/bmj.e7492 Holt SH, Miller JC, Petocz P, Farmakalidis E (1995) A satiety index of common foods. Eur J Clin Nutr 49:675–690 Baker P, Machado P, Santos T, Sievert K, Backholer K, Hadjikakou M, Russell C, Huse O, Bell C, Scrinis G, Worsley A, Friel S, Lawrence M (2020) Ultra-processed foods and the nutrition transition: global, regional and national trends, food systems transformations and political economy drivers. Obes Rev 21:e13126. https://doi.org/10.1111/obr.13126 Poelmans E, Swinnen J (2016) A brief economic history of chocolate. In: Squicciarini M, Swinnen J (eds) The economics of chocolate. Oxford University Press, Oxford, pp 11–42 Moubarac J-C, Parra DC, Cannon G, Monteiro CA (2014) Food classification systems based on food processing: significance and implications for policies and actions: a systematic literature review and assessment. Curr Obes Rep 3:256–272. https://doi.org/10.1007/s13679-014-0092-0 Moodie R, Stuckler D, Monteiro C, Sheron N, Neal B, Thamarangsi T, Lincoln P, Casswell S (2013) Profits and pandemics: prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. Lancet 381:670–679. https://doi.org/10.1016/S0140-6736(12)62089-3 Guyenet SJ, Schwartz MW (2012) Regulation of food intake, energy balance, and body fat mass: implications for the pathogenesis and treatment of obesity. J Clin Endocrinol Metab 97:745–755. https://doi.org/10.1210/jc.2011-2525 US Department of Agriculture: Economic Research Service (2021) Food availability (per capita) data system. https://www.ers.usda.gov/data-products/food-availability-per-capita-data-system/. Accessed 11 April 2022 Guyenet S (2012) By 2606, the US diet will be 100 percent sugar. http://wholehealthsource.blogspot.com/2012/02/by-2606-us-diet-will-be-100-percent.html. Accessed 18 June 2022 Yudkin J (1972) Sugar and disease. Nature 239:197–199. https://doi.org/10.1038/239197a0 Food and Agriculture Organization of the United Nations (2022) FAOSTAT: food balances (-2013, old methodology and population). https://www.fao.org/faostat/en/#data/FBSH. Accessed 11 April 2022 Food and Agriculture Organization of the United Nations (2022) FAOSTAT: food balances (2010-). https://www.fao.org/faostat/en/#data/FBS. Accessed 11 April 2022 Monteiro CA, Cannon G, Levy RB, Moubarac J-C, Louzada ML, Rauber F, Khandpur N, Cediel G, Neri D, Martinez-Steele E, Baraldi LG, Jaime PC (2019) Ultra-processed foods: what they are and how to identify them. Public Health Nutr 22:936–941. https://doi.org/10.1017/S1368980018003762 US Department of Agriculture: Economic Research Service (2020) Loss-adjusted food availability documentation. https://www.ers.usda.gov/data-products/food-availability-per-capita-data-system/loss-adjusted-food-availability-documentation/. Accessed 11 April 2022 Dunford EK, Miles DR, Popkin B, Ng SW (2022) Whole grain and refined grains: an examination of US household grocery store purchases. J Nutr 152:550–558. https://doi.org/10.1093/jn/nxab382 Neves MF, Trombin VG, Marques VN, Martinez LF (2020) Global orange juice market: a 16-year summary and opportunities for creating value. Trop Plant Pathol 45:166–174. https://doi.org/10.1007/S40858-020-00378-1 Public Health England (2016) Government dietary recommendations. Public Health England, London Micha R, Khatibzadeh S, Shi P, Fahimi S, Lim S, Andrews KG, Engell RE, Powles J, Ezzati M, Mozaffarian D (2014) Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. BMJ 348:g2272. https://doi.org/10.1136/BMJ.G2272 Monteiro CA, Cannon GJ (2019) The role of the transnational ultra-processed food industry in the pandemic of obesity and its associated diseases: problems and solutions. World Nutr 10:89–99. https://doi.org/10.26596/WN.201910189-99 Pontzer H, Raichlen DA, Wood BM, Mabulla AZP, Racette SB, Marlowe FW (2012) Hunter-gatherer energetics and human obesity. PLoS One 7:e40503. https://doi.org/10.1371/journal.pone.0040503 United Nations Department of Economic and Social Affairs (2019) World population prospects 2019: standard projections: population data: total population - both sexes. https://population.un.org/wpp2019/Download/Standard/Population/. Accessed 21 March 2022 Davis CG, Blayney DP, Dong D, Ashley Johnson SS (2010) Long-term growth in U.S. cheese consumption may slow. US Department of Agriculture, Washington, DC US Food and Drug Administration (1999) Food labeling: trans fatty acids in nutrition labeling, nutrient content claims, and health claims. Maryland (USA) Hunter JE, Applewhite TH (1991) Reassessment of trans fatty acid availability in the US diet. Am J Clin Nutr 54:363–369. https://doi.org/10.1093/AJCN/54.2.363 US Food and Drug Administration (2018) Final determination regarding partially hydrogenated oils (removing trans fat). https://www.fda.gov/food/food-additives-petitions/final-determination-regarding-partially-hydrogenated-oils-removing-trans-fat. Accessed 27 April 2022 Block G (2004) Foods contributing to energy intake in the US: data from NHANES III and NHANES 1999–2000. J Food Compos Anal 17:439–447. https://doi.org/10.1016/j.jfca.2004.02.007 Steele EM, Baraldi LG, Louzada MLC, Moubarac JC, Mozaffarian D, Monteiro CA (2016) Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ Open 6:e009892. https://doi.org/10.1136/BMJOPEN-2015-009892 Pannucci TE (2019) State of the American diet: a selection of data describing current dietary intakes. Alexandria (VA) Blasbalg TL, Hibbeln JR, Ramsden CE, Majchrzak SF, Rawlings RR (2011) Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr 93:950–962. https://doi.org/10.3945/AJCN.110.006643 Ford ES, Dietz WH (2013) Trends in energy intake among adults in the United States: findings from NHANES. Am J Clin Nutr 97:848–853. https://doi.org/10.3945/ajcn.112.052662 Raatz SK, Conrad Z, Jahns L (2018) Trends in linoleic acid intake in the United States adult population: NHANES 1999–2014. Prostaglandins Leukot Essent Fatty Acids 133:23–28. https://doi.org/10.1016/j.plefa.2018.04.006 Heitmann BL, Lissner L, Osler M (2000) Do we eat less fat, or just report so? Int J Obes Relat Metab Disord J Int Assoc Study Obes 24:435–442. https://doi.org/10.1038/sj.ijo.0801176 Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci U S A 109:12302–12308. https://doi.org/10.1073/pnas.0912953109 Steinfeld H, Wassenaar T, Jutzi S (2006) Livestock production systems in developing countries: status, drivers, trends. Rev Sci Tech 25:505–516. https://doi.org/10.20506/rst.25.2.1677 Cao P, Lu C, Yu Z (2018) Historical nitrogen fertilizer use in agricultural ecosystems of the contiguous United States during 1850–2015: application rate, timing, and fertilizer types. Earth Syst Sci Data 10:969–984. https://doi.org/10.5194/ESSD-10-969-2018 Bouwman AF, Van Der Hoek KW, Eickhout B, Soenario I (2005) Exploring changes in world ruminant production systems. Agric Syst 84:121–153. https://doi.org/10.1016/J.AGSY.2004.05.006 Barański M, Srednicka-Tober D, Volakakis N, Seal C, Sanderson R, Stewart GB, Benbrook C, Biavati B, Markellou E, Giotis C, Gromadzka-Ostrowska J, Rembiałkowska E, Skwarło-Sońta K, Tahvonen R, Janovská D, Niggli U, Nicot P, Leifert C (2014) Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br J Nutr 112:794–811. https://doi.org/10.1017/S0007114514001366 Średnicka-Tober D, Barański M, Seal C, Sanderson R, Benbrook C, Steinshamn H, Gromadzka-Ostrowska J, Rembiałkowska E, Skwarło-Sońta K, Eyre M, Cozzi G, Krogh Larsen M, Jordon T, Niggli U, Sakowski T, Calder PC, Burdge GC, Sotiraki S, Stefanakis A, Yolcu H, Stergiadis S, Chatzidimitriou E, Butler G, Stewart G, Leifert C (2016) Composition differences between organic and conventional meat: a systematic literature review and meta-analysis. Br J Nutr 115:994–1011. https://doi.org/10.1017/S0007114515005073 Średnicka-Tober D, Barański M, Seal CJ, Sanderson R, Benbrook C, Steinshamn H, Gromadzka-Ostrowska J, Rembiałkowska E, Skwarło-Sońta K, Eyre M, Cozzi G, Larsen MK, Jordon T, Niggli U, Sakowski T, Calder PC, Burdge GC, Sotiraki S, Stefanakis A, Stergiadis S, Yolcu H, Chatzidimitriou E, Butler G, Stewart G, Leifert C (2016) Higher PUFA and n-3 PUFA, conjugated linoleic acid, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: a systematic literature review and meta- and redundancy analyses. Br J Nutr 115:1043–1060. https://doi.org/10.1017/S0007114516000349 Mie A, Andersen HR, Gunnarsson S, Kahl J, Kesse-Guyot E, Rembiałkowska E, Quaglio G, Grandjean P (2017) Human health implications of organic food and organic agriculture: a comprehensive review. Environ Health 16:111. https://doi.org/10.1186/s12940-017-0315-4 Mayer A-MB, Trenchard L, Rayns F (2022) Historical changes in the mineral content of fruit and vegetables in the UK from 1940 to 2019: a concern for human nutrition and agriculture. Int J Food Sci Nutr 73:315–326. https://doi.org/10.1080/09637486.2021.1981831 Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellström J, Ovaskainen ML (2007) Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland. J Food Compos Anal 20:487–495. https://doi.org/10.1016/J.JFCA.2007.02.007 Davis DR (2011) Impact of breeding and yield on fruit, vegetable, and grain nutrient content. In: Jenks MA, Bebeli PJ (eds) Breeding for fruit quality. John Wiley & Sons Inc, Chichester, pp 127–150 White PJ, Broadley MR (2005) Historical variation in the mineral composition of edible horticultural products. J Hortic Sci Biotechnol 80:660–667. https://doi.org/10.1080/14620316.2005.11511995 Cunningham JH, Milligan G, Trevisan L (2002) Minerals in Australian fruits and vegetables - a comparison of levels between the 1980s and 2000. Food Standards Australia New Zealand, Kingston ACT (AU) & Wellington (NZ) Eberl E, Li AS, Zheng ZYJ, Cunningham J, Rangan A (2021) Temporal change in iron content of vegetables and legumes in Australia: a scoping review. Foods (Basel, Switzerland) 11:56. https://doi.org/10.3390/foods11010056 Garvin DF, Welch RM, Finley JW (2006) Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. J Sci Food Agric 86:2213–2220. https://doi.org/10.1002/JSFA.2601 Fan M-S, Zhao F-J, Fairweather-Tait SJ, Poulton PR, Dunham SJ, McGrath SP (2008) Evidence of decreasing mineral density in wheat grain over the last 160 years. J trace Elem Med Biol organ Soc Miner Trace Elem 22:315–324. https://doi.org/10.1016/j.jtemb.2008.07.002 Kalt W (2005) Effects of production and processing factors on major fruit and vegetable antioxidants. J Food Sci 70:R11-R19. https://doi.org/10.1111/J.1365-2621.2005.TB09053.X Rickman JC, Barrett DM, Bruhn CM (2007) Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. J Sci Food Agric 87:930–944. https://doi.org/10.1002/JSFA.2825 Wilder RM (1956) A brief history of the enrichment of flour and bread. J Am Med Assoc 162:1539–1541. https://doi.org/10.1001/jama.1956.72970340006010 Beal T, Massiot E, Arsenault JE, Smith MR, Hijmans RJ (2017) Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PLoS One 12:e0175554. https://doi.org/10.1371/journal.pone.0175554 Moradi S, Entezari MH, Mohammadi H, Jayedi A, Lazaridi A-V, Kermani MAH, Miraghajani M (2023) Ultra-processed food consumption and adult obesity risk: a systematic review and dose-response meta-analysis. Crit Rev Food Sci Nutr 63:249–260. https://doi.org/10.1080/10408398.2021.1946005 Moradi S, Hojjati Kermani MA, Bagheri R, Mohammadi H, Jayedi A, Lane MM, Asbaghi O, Mehrabani S, Suzuki K (2021) Ultra-processed food consumption and adult diabetes risk: a systematic review and dose-response meta-analysis. Nutrients 13:4410. https://doi.org/10.3390/nu13124410 Pagliai G, Dinu M, Madarena MP, Bonaccio M, Iacoviello L, Sofi F (2021) Consumption of ultra-processed foods and health status: a systematic review and meta-analysis. Br J Nutr 125:308–318. https://doi.org/10.1017/S0007114520002688 Monteiro CA, Moubarac J-C, Levy RB, Canella DS, da Louzada ML, C, Cannon G, (2018) Household availability of ultra-processed foods and obesity in nineteen European countries. Public Health Nutr 21:18–26. https://doi.org/10.1017/S1368980017001379 Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, Chung ST, Costa E, Courville A, Darcey V, Fletcher LA, Forde CG, Gharib AM, Guo J, Howard R, Joseph PV, McGehee S, Ouwerkerk R, Raisinger K, Rozga I, Stagliano M, Walter M, Walter PJ, Yang S, Zhou M (2019) Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab 30:67-77.e3. https://doi.org/10.1016/j.cmet.2019.05.008 Cutillas-Toĺn A, Manguez-Alarcón L, Mendiola J, López-Espn JJ, Jørgensen N, Navarrete-Munoz EM, Torres-Cantero AM, Chavarro JE (2015) Mediterranean and western dietary patterns are related to markers of testicular function among healthy men. Hum Reprod 30:2945–2955. https://doi.org/10.1093/HUMREP/DEV236 Liu CY, Chou YC, Chao JCJ, Hsu CY, Cha TL, Tsao CW (2015) The association between dietary patterns and semen quality in a general asian population of 7282 males. PLoS One 10:e0134224. https://doi.org/10.1371/JOURNAL.PONE.0134224 Jurewicz J, Radwan M, Sobala W, Radwan P, Bochenek M, Hanke W (2018) Dietary patterns and their relationship with semen quality. Am J Mens Health 12:575–583. https://doi.org/10.1177/1557988315627139 Nassan FL, Jensen TK, Priskorn L, Halldorsson TI, Chavarro JE, Jørgensen N (2020) Association of dietary patterns with testicular function in young Danish men. JAMA Netw Open 3:e1921610. https://doi.org/10.1001/jamanetworkopen.2019.21610 Kurniawan A-L, Hsu C-Y, Chao JC-J, Paramastri R, Lee H-A, Lai P-C, Hsieh N-C, Wu S-FV (2021) Association of testosterone-related dietary pattern with testicular function among adult men: a cross-sectional health screening study in Taiwan. Nutrients 13:259. https://doi.org/10.3390/nu13010259 Eslamian G, Amirjannati N, Rashidkhani B, Sadeghi MR, Baghestani AR, Hekmatdoost A (2015) Adherence to the western pattern is potentially an unfavorable indicator of asthenozoospermia risk: a case-control study. J Am Coll Nutr 35:50–58. https://doi.org/10.1080/07315724.2014.936983 Nassan FL, Priskorn L, Salas-Huetos A, Halldorsson TI, Jensen TK, Jørgensen N, Chavarro JE (2021) Association between intake of soft drinks and testicular function in young men. Hum Reprod 36:3036–3048. https://doi.org/10.1093/HUMREP/DEAB179 Chen L, Xie YM, Pei JH, Kuang J, Chen HM, Chen Z, Li ZW, Fu XY, Wang L, Lai SQ, Zhang ST, Chen ZJ, Lin Jx (2018) Sugar-sweetened beverage intake and serum testosterone levels in adult males 20–39 years old in the United States. Reprod Biol Endocrinol 16:1–7. https://doi.org/10.1186/S12958-018-0378-2/TABLES/2 Meldgaard M, Brix N, Gaml-Sørensen A, Ernst A, Ramlau-Hansen CH, Tøttenborg SS, Hougaard KS, Bonde JPE, Toft G (2022) Consumption of sugar-sweetened or artificially sweetened beverages and semen quality in young men: a cross-sectional study. Int J Environ Res Public Health 19:682. https://doi.org/10.3390/IJERPH19020682 Ghosh I, Sharma PK, Rahman M, Lahkar K (2019) Sugar-sweetened beverage intake in relation to semen quality in infertile couples − a prospective observational study. Fertil Sci Res 6:40. https://doi.org/10.4103/FSR.FSR_12_19 Efrat M, Stein A, Pinkas H, Unger R, Birk R (2022) Sugar consumption is negatively associated with semen quality. Reprod Sci 29:3000–3006. https://doi.org/10.1007/S43032-022-00973-4 Kurniawan AL, Hsu C-Y, Rau H-H, Lin L-Y, Chao JC-J (2019) Dietary patterns in relation to testosterone levels and severity of impaired kidney function among middle-aged and elderly men in Taiwan: a cross-sectional study. Nutr J 18:42. https://doi.org/10.1186/s12937-019-0467-x Guyenet SJ, Carlson SE (2015) Increase in adipose tissue linoleic acid of US adults in the last half century. Adv Nutr 6:660–664. https://doi.org/10.3945/AN.115.009944 Collodel G, Castellini C, Lee JCY, Signorini C (2020) Relevance of fatty acids to sperm maturation and quality. Oxid Med Cell Longev 2020:7038124. https://doi.org/10.1155/2020/7038124 de Catalfo GEH, de Alaniz MJT, Marra CA (2008) Dietary lipids modify redox homeostasis and steroidogenic status in rat testis. Nutrition 24:717–726. https://doi.org/10.1016/J.NUT.2008.03.008 de Catalfo GEH, de Alaniz MJT, Marra CA (2009) Influence of commercial dietary oils on lipid composition and testosterone production in interstitial cells isolated from rat testis. Lipids 44:345–357. https://doi.org/10.1007/S11745-008-3277-Z Safarinejad MR (2011) Effect of omega-3 polyunsaturated fatty acid supplementation on semen profile and enzymatic anti-oxidant capacity of seminal plasma in infertile men with idiopathic oligoasthenoteratospermia: a double-blind, placebo-controlled, randomised study. Andrologia 43:38–47. https://doi.org/10.1111/J.1439-0272.2009.01013.X Conquer JA, Martin JB, Tummon I, Watson L (2000) Tekpetey F (2000) Effect of DHA supplementation on DHA status and sperm motility in asthenozoospermic males. Lipids 352(35):149–154. https://doi.org/10.1007/BF02664764 Falsig A-ML, Gleerup CS, Knudsen UB (2019) The influence of omega-3 fatty acids on semen quality markers: a systematic PRISMA review. Andrology 7:794–803. https://doi.org/10.1111/andr.12649 Mohammadi H, Golbabaei F, Dehghan SF, Imani H, Ramezani Tehrani F, Khodakarim Ardakani S (2022) The influence of vitamin E and omega-3 fatty acids on reproductive health indices among male workers exposed to electromagnetic fields. Am J Mens Health 16:15579883221074820. https://doi.org/10.1177/15579883221074821 Heshmati J, Morvaridzadeh M, Maroufizadeh S, Akbari A, Yavari M, Amirinejad A, Maleki-Hajiagha A, Sepidarkish M (2019) Omega-3 fatty acids supplementation and oxidative stress parameters: a systematic review and meta-analysis of clinical trials. Pharmacol Res 149:104462. https://doi.org/10.1016/J.PHRS.2019.104462 Lin N, Shi JJ, Li YM, Zhang XY, Chen Y, Calder PC, Tang LJ (2016) What is the impact of n-3 PUFAs on inflammation markers in type 2 diabetic mellitus populations?: A systematic review and meta-analysis of randomized controlled trials. Lipids Health Dis 15:1–8. https://doi.org/10.1186/S12944-016-0303-7/FIGURES/3 Azenabor A, Ekun AO, Akinloye O (2015) Impact of inflammation on male reproductive tract. J Reprod Infertil 16:123–129 Abbott K, Burrows TL, Acharya S, Thota RN, Garg ML (2020) Dietary supplementation with docosahexaenoic acid rich fish oil increases circulating levels of testosterone in overweight and obese men. Prostaglandins, Leukot Essent Fat Acids 163:102204. https://doi.org/10.1016/J.PLEFA.2020.102204 Yan L, Bai X, Fang Z, Che L, Xu S, Wu D (2013) Effect of different dietary omega-3/omega-6 fatty acid ratios on reproduction in male rats. Lipids Health Dis 12:33. https://doi.org/10.1186/1476-511X-12-33 Wu HP, Lin YS, Chang CF, Lu SY, Chao PM (2020) Dietary exposure to oxidized frying oil from fetus to adulthood suppresses male reproductive development by altering testicular cholesterol and testosterone homeostasis in Sprague Dawley rats. J Nutr 150:1713–1721. https://doi.org/10.1093/JN/NXAA091 Sağmanligil V, Arsoy D, Sayiner S, Findik A, Gülmez N (2020) Effects of deep-frying palm oil and exercise on sperm and biochemical parameters in mice. J Oil Palm Res 32:647–655. https://doi.org/10.21894/jopr.2020.0074 Grootveld M, Percival BC, Moumtaz S, Gibson M, Woodason K, Akhtar A, Wawire M, Edgar M, Grootveld KL (2021) Commentary: iconoclastic reflections on the ‘safety’ of polyunsaturated fatty acid-rich culinary frying oils: some cautions regarding the laboratory analysis and dietary ingestion of lipid oxidation product toxins. Appl Sci 11:2351. https://doi.org/10.3390/APP11052351 Raben A, Kiens B, Richter EA, Rasmussen LB, Svenstrup B, Micic S, Bennett P (1992) Serum sex hormones and endurance performance after a lacto-ovo vegetarian and a mixed diet. Med Sci Sports Exerc 24:1290–1297 Jenkinson A, Franklin MF, Wahle K, Duthie GG (1999) Dietary intakes of polyunsaturated fatty acids and indices of oxidative stress in human volunteers. Eur J Clin Nutr 53:523–528. https://doi.org/10.1038/sj.ejcn.1600783 Turpeinen AM, Basu S, Mutanen M (1998) A high linoleic acid diet increases oxidative stress in vivo and affects nitric oxide metabolism in humans. Prostaglandins Leukot Essent Fatty Acids 59:229–233. https://doi.org/10.1016/s0952-3278(98)90067-9 Dutta S, Majzoub A, Agarwal A (2019) Oxidative stress and sperm function: a systematic review on evaluation and management. Arab J Urol 17:87–97. https://doi.org/10.1080/2090598X.2019.1599624 Dadkhah H, Kazemi A, Nasr-Isfahani M-H, Ehsanpour S (2017) The relationship between the amount of saturated fat intake and semen quality in men. Iran J Nurs Midwifery Res 22:46. https://doi.org/10.4103/1735-9066.202067 Jensen TK, Heitmann BL, Jensen MB, Halldorsson TI, Andersson AM, Skakkebœk NE, Joensen UN, Lauritsen MP, Christiansen P, Dalgård C, Lassen TH, Jørgensen N (2013) High dietary intake of saturated fat is associated with reduced semen quality among 701 young Danish men from the general population. Am J Clin Nutr 97:411–418. https://doi.org/10.3945/AJCN.112.042432 Attaman JA, Toth TL, Furtado J, Campos H, Hauser R, Chavarro JE (2012) Dietary fat and semen quality among men attending a fertility clinic. Hum Reprod 27:1466–1474. https://doi.org/10.1093/HUMREP/DES065 Chavarro JE, Mínguez-Alarcón L, Mendiola J, Cutillas-Tolín A, López-Espín JJ, Torres-Cantero AM (2014) Trans fatty acid intake is inversely related to total sperm count in young healthy men. Hum Reprod 29:429–440. https://doi.org/10.1093/HUMREP/DET464 Povey AC, Clyma JA, McNamee R, Moore HD, Baillie H, Pacey AA, Cade JE, Cherry NM (2020) Phytoestrogen intake and other dietary risk factors for low motile sperm count and poor sperm morphology. Andrology 8:1805–1814. https://doi.org/10.1111/ANDR.12858 Shrank WH, Patrick AR, Brookhart MA (2011) Healthy user and related biases in observational studies of preventive interventions: a primer for physicians. J Gen Intern Med 26:546. https://doi.org/10.1007/S11606-010-1609-1 Lin CTJ, Yen ST (2010) Knowledge of dietary fats among US consumers. J Am Diet Assoc 110:613–618. https://doi.org/10.1016/J.JADA.2009.12.020 Montano L, Ceretti E, Donato F, Bergamo P, Zani C, Viola GCV, Notari T, Pappalardo S, Zani D, Ubaldi S, Bollati V, Consales C, Leter G, Trifuoggi M, Amoresano A, Lorenzetti S (2022) Effects of a lifestyle change intervention on semen quality in healthy young men living in highly polluted areas in Italy: the FASt randomized controlled trial. Eur Urol Focus 8:351–359. https://doi.org/10.1016/J.EUF.2021.01.017 Chavarro JE, Attaman JA, Toth TL, Ford JB, Keller M, Hauser R (2011) Intake of trans fatty acids and semen quality among men attending a fertility clinic. Fertil Steril 96:S14–S15. https://doi.org/10.1016/J.FERTNSTERT.2011.07.064 Mínguez-Alarcón L, Chavarro JE, Mendiola J, Roca M, Tanrikut C, Vioque J, Jørgensen N, Torres-Cantero AM (2017) Fatty acid intake in relation to reproductive hormones and testicular volume among young healthy men. Asian J Androl 19:184. https://doi.org/10.4103/1008-682X.190323 Chavarro JE, Furtado J, Toth TL, Ford J, Keller M, Campos H, Hauser R (2011) Trans–fatty acid levels in sperm are associated with sperm concentration among men from an infertility clinic. Fertil Steril 95:1794–1797. https://doi.org/10.1016/J.FERTNSTERT.2010.10.039 Hanis T, Zidek V, Sachova J, Klir P, Deyl Z (1989) Effects of dietary trans-fatty acids on reproductive performance of Wistar rats. Br J Nutr 61:519–529. https://doi.org/10.1079/BJN19890140 Scott R, MacPherson A, Yates RW, Hussain B, Dixon J (1998) The effect of oral selenium supplementation on human sperm motility. Br J Urol 82:76–80. https://doi.org/10.1046/j.1464-410x.1998.00683.x Safarinejad MR, Safarinejad S (2009) Efficacy of selenium and/or N-acetyl-cysteine for improving semen parameters in infertile men: a double-blind, placebo controlled, randomized study. J Urol 181:741–751. https://doi.org/10.1016/j.juro.2008.10.015 Hawkes WC, Alkan Z, Wong K (2009) Selenium supplementation does not affect testicular selenium status or semen quality in North American men. J Androl 30:525–533. https://doi.org/10.2164/jandrol.108.006940 Omu AE, Dashti H, Al-Othman S (1998) Treatment of asthenozoospermia with zinc sulphate: andrological, immunological and obstetric outcome. Eur J Obstet Gynecol Reprod Biol 79:179–184. https://doi.org/10.1016/s0301-2115(97)00262-5 Raigani M, Yaghmaei B, Amirjannti N, Lakpour N, Akhondi MM, Zeraati H, Hajihosseinal M, Sadeghi MR (2014) The micronutrient supplements, zinc sulphate and folic acid, did not ameliorate sperm functional parameters in oligoasthenoteratozoospermic men. Andrologia 46:956–962. https://doi.org/10.1111/AND.12180 Wong WY, Merkus HMWM, Thomas CMG, Menkveld R, Zielhuis GA, Steegers-Theunissen RPM (2002) Effects of folic acid and zinc sulfate on male factor subfertility: a double-blind, randomized, placebo-controlled trial. Fertil Steril 77:491–498. https://doi.org/10.1016/S0015-0282(01)03229-0 Schisterman EF, Sjaarda LA, Clemons T, Carrell DT, Perkins NJ, Johnstone E, Lamb D, Chaney K, Van Voorhis BJ, Ryan G, Summers K, Hotaling J, Robins J, Mills JL, Mendola P, Chen Z, DeVilbiss EA, Peterson CM, Mumford SL (2020) Effect of folic acid and zinc supplementation in men on semen quality and live birth among couples undergoing infertility treatment: a randomized clinical trial. JAMA 323:35–48. https://doi.org/10.1001/jama.2019.18714 Prasad AS, Mantzoros CS, Beck FWJ, Hess JW, Brewer GJ (1996) Zinc status and serum testosterone levels of healthy adults. Nutrition 12:344–348. https://doi.org/10.1016/S0899-9007(96)80058-X Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J (2005) Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl 26:349–353. https://doi.org/10.2164/JANDROL.04146 Kessopoulou E, Powers HJ, Sharma KK, Pearson MJ, Russell JM, Cooke ID, Barratt CLR (1995) A double-blind randomized placebo cross-over controlled trial using the antioxidant vitamin E to treat reactive oxygen species associated male infertility. Fertil Steril 64:825–831. https://doi.org/10.1016/S0015-0282(16)57861-3 Cyrus A, Kabir A, Goodarzi D, Moghimi M (2015) The effect of adjuvant vitamin C after varicocele surgery on sperm quality and quantity in infertile men: a double blind placebo controlled clinical trial. Int Braz J Urol 41:230–238. https://doi.org/10.1590/S1677-5538.IBJU.2015.02.07 Irani M, Amirian M, Sadeghi R, Le LJ, Latifnejad Roudsari R (2017) The effect of folate and folate plus zinc supplementation on endocrine parameters and sperm characteristics in sub-fertile men: a systematic review and meta-analysis. Urol J 14:4069–4078 Kumamoto Y, Maruta H, Ishigami J, Kamidono S, Orikasa S, Kimura M, Yamanaka H, Kurihara H, Koiso K, Okada K (1988) Clinical efficacy of mecobalamin in the treatment of oligozoospermia–results of double-blind comparative clinical study. Hinyokika Kiyo 34:1109–1132 Calogero AE, Gullo G, La Vignera S, Condorelli RA, Vaiarelli A (2015) Myoinositol improves sperm parameters and serum reproductive hormones in patients with idiopathic infertility: a prospective double-blind randomized placebo-controlled study. Andrology 3:491–495. https://doi.org/10.1111/ANDR.12025 Alahmar AT, Singh R (2022) Comparison of the effects of coenzyme Q10 and Centrum multivitamins on semen parameters, oxidative stress markers, and sperm DNA fragmentation in infertile men with idiopathic oligoasthenospermia. Clin Exp Reprod Med 49:49–56. https://doi.org/10.5653/cerm.2021.04910 Singh AK, Tiwari AK, Singh PB, Dwivedi US, Trivedi S, Singh SK, Agrawal NK, Deshpande SB (2010) Multivitamin and micronutrient treatment improves semen parameters of azoospermic patients with maturation arrest. Indian J Physiol Pharmacol 54:157–163 de Ligny W, Smits RM, Mackenzie-Proctor R, Jordan V, Fleischer K, de Bruin JP, Showell MG (2022) Antioxidants for male subfertility. Cochrane Database Syst Rev 5:CD007411. https://doi.org/10.1002/14651858.CD007411.pub5 Banihani SA, Aljabali SM (2020) Seminal plasma vitamin B6 levels in men with asthenozoospermia and men with normal sperm motility, a measurement using liquid chromatography with tandem mass spectrometry. Andrologia 52:e13556. https://doi.org/10.1111/AND.13556 Sun Y, Chen C, Liu GG, Wang M, Shi C, Yu G, Lv F, Wang N, Zhang S (2020) The association between iodine intake and semen quality among fertile men in China. BMC Public Health 20:1–8. https://doi.org/10.1186/S12889-020-08547-2/TABLES/3 Zamir A, Ben-Zeev T, Hoffman JR (2021) Manipulation of dietary intake on changes in circulating testosterone concentrations. Nutrients 13:3375. https://doi.org/10.3390/nu13103375 Salas-Huetos A, Rosique-Esteban N, Becerra-Tomás N, Vizmanos B, Bulló M, Salas-Salvadó J (2018) The effect of nutrients and dietary supplements on sperm quality parameters: a systematic review and meta-analysis of randomized clinical trials. Adv Nutr 9:833–848. https://doi.org/10.1093/ADVANCES/NMY057 Wong WY, Flik G, Groenen PMW, Swinkels DW, Thomas CMG, Copius-Peereboom JHJ, Merkus HMWM, Steegers-Theunissen RPM (2001) The impact of calcium, magnesium, zinc, and copper in blood and seminal plasma on semen parameters in men. Reprod Toxicol 15:131–136. https://doi.org/10.1016/S0890-6238(01)00113-7 Chyra-Jach D, Kaletka Z, Dobrakowski M, Machoń-Grecka A, Kasperczyk S, Bellanti F, Birkner E, Kasperczyk A (2020) Levels of macro- and trace elements and select cytokines in the semen of infertile men. Biol Trace Elem Res 197:431–439. https://doi.org/10.1007/S12011-019-02022-9 Tsukanov AY, Turchaninov D V., Satybaldin D, Yunatskaya TA, Sokolov KN (2020) Micronutrient deficiency in men with infertility. Androl Genit Surg 21:58–63. https://doi.org/10.17650/2070-9781-2020-21-2-58-63 Public Health England (2021) Composition of foods integrated dataset (CoFID). https://www.gov.uk/government/publications/composition-of-foods-integrated-dataset-cofid. Accessed 11 May 2022 Williams EA, Parker M, Robinson A, Pitt S, Pacey AA (2020) A randomized placebo-controlled trial to investigate the effect of lactolycopene on semen quality in healthy males. Eur J Nutr 59:825–833. https://doi.org/10.1007/S00394-019-02091-5/TABLES/4 Alizadeh F, Javadi M, Karami AA, Gholaminejad F, Kavianpour M, Haghighian HK (2018) Curcumin nanomicelle improves semen parameters, oxidative stress, inflammatory biomarkers, and reproductive hormones in infertile men: a randomized clinical trial. Phyther Res 32:514–521. https://doi.org/10.1002/PTR.5998 Illiano E, Trama F, Zucchi A, Iannitti RG, Fioretti B, Costantini E (2020) Resveratrol-based multivitamin supplement increases sperm concentration and motility in idiopathic male infertility: a pilot clinical study. J Clin Med 9:4017. https://doi.org/10.3390/jcm9124017 Robbins WA, Xun L, FitzGerald LZ, Esguerra S, Henning SM, Carpenter CL (2012) Walnuts improve semen quality in men consuming a western-style diet: randomized control dietary intervention trial. Biol Reprod 87:1–8. https://doi.org/10.1095/BIOLREPROD.112.101634/2514205 Masterson JM, Kim HH, Robbins WA (2020) Walnuts improve semen quality in infertile men: a randomized control dietary intervention trial. Fertil Steril 114:e23–e24. https://doi.org/10.1016/j.fertnstert.2020.08.092 Salas-Huetos A, Moraleda R, Giardina S, Anton E, Blanco J, Salas-Salvadó J, Bulló M (2018) Effect of nut consumption on semen quality and functionality in healthy men consuming a Western-style diet: a randomized controlled trial. Am J Clin Nutr 108:953–962. https://doi.org/10.1093/AJCN/NQY181 Bolling BW, Chen C-YO, McKay DL, Blumberg JB (2011) Tree nut phytochemicals: composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr Res Rev 24:244–275. https://doi.org/10.1017/S095442241100014X Kolahdooz M, Nasri S, Modarres SZ, Kianbakht S, Huseini HF (2014) Effects of Nigella sativa L. seed oil on abnormal semen quality in infertile men: a randomized, double-blind, placebo-controlled clinical trial. Phytomedicine 21:901–905. https://doi.org/10.1016/j.phymed.2014.02.006 Mansoori A, Hosseini S, Zilaee M, Hormoznejad R, Fathi M (2020) Effect of fenugreek extract supplement on testosterone levels in male: a meta-analysis of clinical trials. Phytother Res 34:1550–1555. https://doi.org/10.1002/ptr.6627 Eskenazi B, Kidd SA, Marks AR, Sloter E, Block G, Wyrobek AJ (2005) Antioxidant intake is associated with semen quality in healthy men. Hum Reprod 20:1006–1012. https://doi.org/10.1093/HUMREP/DEH725 Zareba P, Colaci DS, Afeiche M, Gaskins AJ, Jørgensen N, Mendiola J, Swan SH, Chavarro JE (2013) Semen quality in relation to antioxidant intake in a healthy male population. Fertil Steril 100:1572–1579. https://doi.org/10.1016/j.fertnstert.2013.08.032 Talebi S, Arab A, Sorraya N (2021) The association between dietary antioxidants and semen parameters: a cross-sectional study among Iranian infertile men. Biol Trace Elem Res 200:3957–3964. https://doi.org/10.1007/S12011-021-03007-3 Benedetti S, Tagliamonte MC, Catalani S, Primiterra M, Canestrari F, De SS, Palini S, Bulletti C (2012) Differences in blood and semen oxidative status in fertile and infertile men, and their relationship with sperm quality. Reprod Biomed Online 25:300–306. https://doi.org/10.1016/J.RBMO.2012.05.011 Bhardwaj JK, Paliwal A, Saraf P (2021) Effects of heavy metals on reproduction owing to infertility. J Biochem Mol Toxicol 35:e22823. https://doi.org/10.1002/JBT.22823 Wagner M, Oehlmann J (2009) Endocrine disruptors in bottled mineral water: total estrogenic burden and migration from plastic bottles. Environ Sci Pollut Res 16:278–286. https://doi.org/10.1007/s11356-009-0107-7 Snedeker SM (2014) Methylnaphthalene in food packaging and cadmium in food packaging and household items: overview of exposure, toxicology, regulatory aspects, and research needs. In: Snedeker SM (ed) Toxicants in food packaging and household plastics: exposure and health risks to consumers. Springer, London, pp 245–263 Gärtner S, Balski M, Koch M, Nehls A (2009) Analysis and migration of phthalates in infant food packed in recycled paperboard. J Agric Food Chem 57:10675–10681. https://doi.org/10.1021/JF902683M Pant N, Pant A, Shukla M, Mathur N, Gupta Y, Saxena D (2011) Environmental and experimental exposure of phthalate esters: the toxicological consequence on human sperm. Hum Exp Toxicol 30:507–514. https://doi.org/10.1177/0960327110374205 Chiu Y-H, Gaskins AJ, Williams PL, Mendiola J, Jørgensen N, Levine H, Hauser R, Swan SH, Chavarro JE (2016) Intake of fruits and vegetables with low-to-moderate pesticide residues is positively associated with semen-quality parameters among young healthy men. J Nutr 146:1084–1092. https://doi.org/10.3945/jn.115.226563 Melgarejo M, Mendiola J, Koch HM, Moñino-García M, Noguera-Velasco JA, Torres-Cantero AM (2015) Associations between urinary organophosphate pesticide metabolite levels and reproductive parameters in men from an infertility clinic. Environ Res 137:292–298. https://doi.org/10.1016/J.ENVRES.2015.01.004 Moreira S, Pereira SC, Seco-Rovira V, Oliveira PF, Alves MG, Pereira M de L (2021) Pesticides and male fertility: a dangerous crosstalk. Metabolites 11:799. https://doi.org/10.3390/METABO11120799 Eaton M, Schenker M, Whorton MD, Samuels S, Perkins C, Overstreet J (1986) Seven-year follow-up of workers exposed to 1,2-dibromo-3-chloropropane. J Occup Med 28:1145–1150 World Health Organization (2008) Guidance for identifying populations at risk from mercury exposure. World Health Organization, Geneva Henriques MC, Loureiro S, Fardilha M, Herdeiro MT (2019) Exposure to mercury and human reproductive health: a systematic review. Reprod Toxicol 85:93–103. https://doi.org/10.1016/j.reprotox.2019.02.012 Li S, Han B, Wu P, Yang Q, Wang X, Li J, Liao Y, Deng N, Jiang H, Zhang Z (2022) Effect of inorganic mercury exposure on reproductive system of male mice: immunosuppression and fibrosis in testis. Environ Toxicol 37:69–78. https://doi.org/10.1002/tox.23378 Ai CE, Li CJ, Tsou MC, Chen JL, Hsi HC, Chien LC (2019) Blood and seminal plasma mercury levels and predatory fish intake in relation to low semen quality. Environ Sci Pollut Res 26:19425–19433. https://doi.org/10.1007/S11356-019-04592-6 Choy CMY, Lam CWK, Cheung LTF, Briton-Jones CM, Cheung LP, Haines CJ (2002) Infertility, blood mercury concentrations and dietary seafood consumption: a case–control study. BJOG An Int J Obstet Gynaecol 109:1121–1125. https://doi.org/10.1111/j.1471-0528.2002.02084.x Mínguez-Alarcón L, Afeiche MC, Williams PL, Arvizu M, Tanrikut C, Amarasiriwardena CJ, Ford JB, Hauser R, Chavarro JE, Team ES (2018) Hair mercury (Hg) levels, fish consumption and semen parameters among men attending a fertility center. Int J Hyg Environ Health 221:174–182. https://doi.org/10.1016/j.ijheh.2017.10.014 European Food Safety Authority (2012) Cadmium dietary exposure in the European population. EFSA Journal 10:2551. https://doi.org/10.2903/j.efsa.2012.2551 Zhang Y, Li S, Li S (2019) Relationship between cadmium content in semen and male infertility: a meta-analysis. Environ Sci Pollut Res Int 26:1947–1953. https://doi.org/10.1007/s11356-018-3748-6 Benoff S, Auborn K, Marmar JL, Hurley IR (2008) Link between low-dose environmentally relevant cadmium exposures and asthenozoospermia in a rat model. Fertil Steril 89:e73–e79. https://doi.org/10.1016/J.FERTNSTERT.2007.12.035 Amato AA, Wheeler HB, Blumberg B (2021) Obesity and endocrine-disrupting chemicals. Endocr. Connect 10:R87–R105. https://doi.org/10.1530/EC-20-0578 Tinkov AA, Aschner M, Ke T, Ferrer B, Zhou J-C, Chang J-S, Santamaría A, Chao JC-J, Aaseth J, Skalny AV (2021) Adipotropic effects of heavy metals and their potential role in obesity. Fac Rev 10:32. https://doi.org/10.12703/R/10-32 Pottenger FMJ (1946) The effect of heat-processed foods and metabolized vitamin D milk on the dentofacial structures of experimental animals. Am J Orthod Oral Surg 32:467–485. https://doi.org/10.1016/0096-6347(46)90180-9 Price WA (1939) Nutrition and physical degeneration: a comparison of primitive and modern diets and their effects. PB Hoeber, New York Painter RC, Osmond C, Gluckman P, Hanson M, Phillips DIW, Roseboom TJ (2008) Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 115:1243–1249. https://doi.org/10.1111/j.1471-0528.2008.01822.x Kaati G, Bygren LO, Edvinsson S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 10:682–688. https://doi.org/10.1038/sj.ejhg.5200859 Rodríguez-González GL, Vega CC, Boeck L, Vázquez M, Bautista CJ, Reyes-Castro LA, Saldaña O, Lovera D, Nathanielsz PW, Zambrano E (2014) Maternal obesity and overnutrition increase oxidative stress in male rat offspring reproductive system and decrease fertility. Int J Obes 39:549–556. https://doi.org/10.1038/ijo.2014.209 Fullston T, Palmer NO, Owens JA, Mitchell M, Bakos HW, Lane M (2012) Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum Reprod 27:1391–1400. https://doi.org/10.1093/HUMREP/DES030 Pavlinkova G, Margaryan H, Zatecka E, Valaskova E, Elzeinova F, Kubatova A, Bohuslavova R, Peknicova J (2017) Transgenerational inheritance of susceptibility to diabetes-induced male subfertility. Sci Rep 7:1–14. https://doi.org/10.1038/s41598-017-05286-0 Akindele OO, Kunle-Alabi OT, Udofia UA, Ahmed TT, Raji Y (2015) Maternal hyperglycemia at different stages of gestation and its effects on male reproductive functions in rats. J Dev Orig Health Dis 6:512–519. https://doi.org/10.1017/S2040174415007217 Arendt LH, Høyer BB, Kreilgaard AF, Bech BH, Toft G, Hougaard KS, Bonde JP, Olsen J, Ramlau-Hansen CH (2021) Maternal pre-pregnancy overweight and infertility in sons and daughters: a cohort study. Acta Obstet Gynecol Scand 100:843–849. https://doi.org/10.1111/AOGS.14045 Hounsgaard ML, Håkonsen LB, Vested A, Thulstrup AM, Olsen J, Bonde JP, Nohr EA, Ramlau-Hansen CH (2014) Maternal pre-pregnancy body mass index and pubertal development among sons. Andrology 2:198–204. https://doi.org/10.1111/J.2047-2927.2013.00171.X Jääskeläinen A, Pussinen J, Nuutinen O, Schwab U, Pirkola J, Kolehmainen M, Järvelin M-R, Laitinen J (2011) Intergenerational transmission of overweight among Finnish adolescents and their parents: a 16-year follow-up study. Int J Obes 35:1289–1294. https://doi.org/10.1038/ijo.2011.150 Dabelea D, Pettitt DJ (2001) Intrauterine diabetic environment confers risks for type 2 diabetes mellitus and obesity in the offspring, in addition to genetic susceptibility. J Pediatr Endocrinol Metab 14:1085–1091. https://doi.org/10.1515/JPEM-2001-0803/MACHINEREADABLECITATION/RIS Wang C, Yatsuya H, Tamakoshi K, Toyoshima H, Wada K, Li Y, Hilawe EH, Uemura M, Chiang C, Zhang Y, Otsuka R, Ota A, Hirakawa Y, Aoyama A (2015) Association between parental history of diabetes and the incidence of type 2 diabetes mellitus differs according to the sex of the parent and offspring’s body weight: a finding from a Japanese worksite-based cohort study. Prev Med (Baltim) 81:49–53. https://doi.org/10.1016/j.ypmed.2015.07.021 Kanmiki EW, Fatima Y, Mamun AA (2022) Multigenerational transmission of obesity: a systematic review and meta-analysis. Obes Rev an Off J Int Assoc Study Obes 23:e13405. https://doi.org/10.1111/obr.13405 Meneghini MA, Galarza RA, Flores Quiroga JP, Faletti AG (2022) Diet-induced maternal obesity and overnutrition cause a decrease in the sperm quality of the offspring. J Nutr Biochem 103:108966. https://doi.org/10.1016/J.JNUTBIO.2022.108966 Jacobs S, Teixeira DS, Guilherme C, da Rocha CFK, Aranda BCC, Reis AR, de Souza MA, Franci CR, Sanvitto GL (2014) The impact of maternal consumption of cafeteria diet on reproductive function in the offspring. Physiol Behav 129:280–286. https://doi.org/10.1016/j.physbeh.2014.03.003 Soubry A, Murphy SK, Vansant G, He Y, Price TM, Hoyo C (2021) Opposing epigenetic signatures in human sperm by intake of fast food Versus healthy food. Front Endocrinol (Lausanne) 12:625204. https://doi.org/10.3389/fendo.2021.625204 Fomon SJ (2001) Infant feeding in the 20th century: formula and beikost. J Nutr 131:409S-420S. https://doi.org/10.1093/JN/131.2.409S Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J, Murch S, Sankar MJ, Walker N, Rollins NC (2016) Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet (London, England) 387:475–490. https://doi.org/10.1016/S0140-6736(15)01024-7 Bernard A, Nickmilder M (2013) Association of breastfeeding with higher serum inhibin B level at adolescence. JAMA Pediatr 167:869–870. https://doi.org/10.1001/JAMAPEDIATRICS.2013.95 Laustsen JM, Jensen MS, Thulstrup AM, Gabel P, Toft G, Bonde JP, Olsen J, Ramlau-Hansen CH (2011) Does breastfeeding influence future sperm quality and reproductive hormones? Int J Androl 34:165–172. https://doi.org/10.1111/J.1365-2605.2010.01070.X Horta BL, Loret de Mola C, Victora CG (2015) Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: a systematic review and meta-analysis. Acta Paediatr 104:30–37. https://doi.org/10.1111/apa.13133 Damgaard IN, Skakkebæk NE, Toppari J, Virtanen HE, Shen H, Schramm KW, Petersen JH, Jensen TK, Main KM, Boisen K, Chellakooty M, Schmidt I, Kaleva M, Soumi A (2006) Persistent pesticides in human breast milk and cryptorchidism. Environ Health Perspect 114:1133–1138. https://doi.org/10.1289/EHP.8741 Mocarelli P, Gerthoux PM, Needham LL, Patterson DG, Limonta G, Falbo R, Signorini S, Bertona M, Crespi C, Sarto C, Scott PK, Turner WE, Brambilla P (2011) Perinatal exposure to low doses of dioxin can permanently impair human semen quality. Environ Health Perspect 119:713–718. https://doi.org/10.1289/EHP.1002134 Swan SH, Liu F, Overstreet JW, Brazil C, Skakkebaek NE (2007) Semen quality of fertile US males in relation to their mothers’ beef consumption during pregnancy. Hum Reprod 22:1497–1502. https://doi.org/10.1093/humrep/dem068 Lagerpusch M, Bosy-Westphal A, Kehden B, Peters A, Müller MJ (2012) Effects of brief perturbations in energy balance on indices of glucose homeostasis in healthy lean men. Int J Obes (Lond) 36:1094–1101. https://doi.org/10.1038/ijo.2011.211 Walhin J-P, Richardson JD, Betts JA, Thompson D (2013) Exercise counteracts the effects of short-term overfeeding and reduced physical activity independent of energy imbalance in healthy young men. J Physiol 591:6231–6243. https://doi.org/10.1113/jphysiol.2013.262709 Gupta S, Hawk T, Aggarwal A, Drewnowski A (2019) Characterizing ultra-processed foods by energy density, nutrient density, and cost. Front Nutr 6:70. https://doi.org/10.3389/fnut.2019.00070 Parnarouskis L, Gearhardt AN (2022) Preliminary evidence that tolerance and withdrawal occur in response to ultra-processed foods. Curr Addict Reports. https://doi.org/10.1007/s40429-022-00425-8 de Macedo IC, de Freitas JS, da Silva Torres IL (2016) The influence of palatable diets in reward system activation: a mini review. Adv Pharmacol Sci 2016:7238679. https://doi.org/10.1155/2016/7238679 Burger KS (2017) Frontostriatal and behavioral adaptations to daily sugar-sweetened beverage intake: a randomized controlled trial. Am J Clin Nutr 105:555–563. https://doi.org/10.3945/ajcn.116.140145 Yaribeygi H, Atkin SL, Sahebkar A (2019) A review of the molecular mechanisms of hyperglycemia-induced free radical generation leading to oxidative stress. J Cell Physiol 234:1300–1312. https://doi.org/10.1002/jcp.27164 La Vignera S, Condorelli RA, Vicari E, D’Agata R, Salemi M, Calogero AE (2012) High levels of lipid peroxidation in semen of diabetic patients. Andrologia 44(Suppl 1):565–570. https://doi.org/10.1111/j.1439-0272.2011.01228.x Karimi J, Goodarzi MT, Tavilani H, Khodadadi I, Amiri I (2011) Relationship between advanced glycation end products and increased lipid peroxidation in semen of diabetic men. Diabetes Res Clin Pract 91:61–66. https://doi.org/10.1016/j.diabres.2010.09.024 Condorelli RA, La Vignera S, Mongioì LM, Alamo A, Calogero AE (2018) Diabetes mellitus and infertility: different pathophysiological effects in type 1 and type 2 on sperm function. Front Endocrinol (Lausanne) 9:268. https://doi.org/10.3389/fendo.2018.00268 Plante M, de Lamirande E, Gagnon C (1994) Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril 62:387–393. https://doi.org/10.1016/s0015-0282(16)56895-2 Pitteloud N, Hardin M, Dwyer AA, Valassi E, Yialamas M, Elahi D, Hayes FJ (2005) Increasing insulin resistance is associated with a decrease in leydig cell testosterone secretion in men. J Clin Endocrinol Metab 90:2636–2641. https://doi.org/10.1210/jc.2004-2190 Walczak-Jedrzejowska R, Wolski JK, Slowikowska-Hilczer J (2013) The role of oxidative stress and antioxidants in male fertility. Cent Eur J Urol 66:60–67. https://doi.org/10.5173/ceju.2013.01.art19 Bongalhardo DC, Leeson S, Buhr MM (2009) Dietary lipids differentially affect membranes from different areas of rooster sperm. Poult Sci 88:1060–1069. https://doi.org/10.3382/ps.2008-00392 Arscott GH, Parker JE, Dickinson EM (1965) Effect of dietary linoleic acid, vitamin E and ethoxyguin on fertility of male chickens. J Nutr 87:63–68. https://doi.org/10.1093/jn/87.1.63 DiNicolantonio JJ, O’Keefe JH (2018) Importance of maintaining a low omega-6/omega-3 ratio for reducing inflammation. Open Hear 5:e000946 Kumar V, Abbas AK, Aster JC (2015) Inflammation and repair. In: Kumar V, Abbas AK, Aster JC (eds) Robbins and Cotran: pathologic basis of disease, 9th edn. Elsevier, Saunders, pp 69–112 Peeker R, Abramsson L, Marklund SL (1997) Superoxide dismutase isoenzymes in human seminal plasma and spermatozoa. Mol Hum Reprod 3:1061–1066. https://doi.org/10.1093/molehr/3.12.1061 Brigelius-Flohé R, Flohé L (2020) Regulatory phenomena in the glutathione peroxidase superfamily. Antioxid Redox Signal 33:498–516. https://doi.org/10.1089/ars.2019.7905 Agarwal A, Nallella KP, Allamaneni SSR, Said TM (2004) Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biomed Online 8:616–627. https://doi.org/10.1016/s1472-6483(10)61641-0 Drevet JR (2006) The antioxidant glutathione peroxidase family and spermatozoa: a complex story. Mol Cell Endocrinol 250:70–79. https://doi.org/10.1016/j.mce.2005.12.027 Bohn T (2019) Carotenoids and markers of oxidative stress in human observational studies and intervention trials: implications for chronic diseases. Antioxidants (Basel, Switzerland) 8:179. https://doi.org/10.3390/antiox8060179 Tvrdá E, Kováčik A, Tušimová E, Paál D, Mackovich A, Alimov J, Lukáč N (2016) Antioxidant efficiency of lycopene on oxidative stress - induced damage in bovine spermatozoa. J Anim Sci Biotechnol 7:50. https://doi.org/10.1186/s40104-016-0113-9 Khor A, Grant R, Tung C, Guest J, Pope B, Morris M, Bilgin A (2014) Postprandial oxidative stress is increased after a phytonutrient-poor food but not after a kilojoule-matched phytonutrient-rich food. Nutr Res 34:391–400. https://doi.org/10.1016/j.nutres.2014.04.005 Makris KC, Konstantinou C, Andrianou XD, Charisiadis P, Kyriacou A, Gribble MO, Christophi CA (2019) A cluster-randomized crossover trial of organic diet impact on biomarkers of exposure to pesticides and biomarkers of oxidative stress/inflammation in primary school children. PLoS One 14:e0219420. https://doi.org/10.1371/journal.pone.0219420 Murray M, Selby-Pham S, Colton B-L, Bennett L, Williamson G, Dordevic AL (2021) Does timing of phytonutrient intake influence the suppression of postprandial oxidative stress? A systematic literature review. Redox Biol 46:102123. https://doi.org/10.1016/j.redox.2021.102123 Biswas SK (2016) Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev 2016:5698931. https://doi.org/10.1155/2016/5698931 Christman JW, Blackwell TS, Juurlink BH (2000) Redox regulation of nuclear factor kappa B: therapeutic potential for attenuating inflammatory responses. Brain Pathol 10:153–162. https://doi.org/10.1111/j.1750-3639.2000.tb00252.x Sanocka D, Jedrzejczak P, Szumała-Kaekol A, Fraczek M, Kurpisz M (2003) Male genital tract inflammation: the role of selected interleukins in regulation of pro-oxidant and antioxidant enzymatic substances in seminal plasma. J Androl 24:448–455. https://doi.org/10.1002/j.1939-4640.2003.tb02693.x Sarkar O, Bahrainwala J, Chandrasekaran S, Kothari S, Mathur PP, Agarwal A (2011) Impact of inflammation on male fertility. Front Biosci (Elite Ed) 3:89–95. https://doi.org/10.2741/e223 Hong CY, Park JH, Ahn RS, Im SY, Choi H-S, Soh J, Mellon SH, Lee K (2004) Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol Cell Biol 24:2593–2604. https://doi.org/10.1128/MCB.24.7.2593-2604.2004 Sarkar O, Mathur PP, Cheng CY, Mruk DD (2008) Interleukin 1 alpha (IL1A) is a novel regulator of the blood-testis barrier in the rat. Biol Reprod 78:445–454. https://doi.org/10.1095/biolreprod.107.064501 Ganaiem M, AbuElhija M, Lunenfeld E, Cherniy N, Weisze N, Itach SB-S, Breitbart H, Apte R, Huleihel M (2009) Effect of interleukin-1 receptor antagonist gene deletion on male mouse fertility. Endocrinology 150:295–303. https://doi.org/10.1210/en.2008-0848 Cao H (2014) Adipocytokines in obesity and metabolic disease. J Endocrinol 220:T47-59. https://doi.org/10.1530/JOE-13-0339 Zhang H, Yin Y, Wang G, Liu Z, Liu L, Sun F (2014) Interleukin-6 disrupts blood-testis barrier through inhibiting protein degradation or activating phosphorylated ERK in Sertoli cells. Sci Rep 4:4260. https://doi.org/10.1038/srep04260 Huang G, Yuan M, Zhang J, Li J, Gong D, Li Y, Zhang J, Lin P, Huang L (2016) IL-6 mediates differentiation disorder during spermatogenesis in obesity-associated inflammation by affecting the expression of Zfp637 through the SOCS3/STAT3 pathway. Sci Rep 6:28012. https://doi.org/10.1038/srep28012 Sarchielli E, Comeglio P, Squecco R, Ballerini L, Mello T, Guarnieri G, Idrizaj E, Mazzanti B, Vignozzi L, Gallina P, Maggi M, Vannelli GB, Morelli A (2017) Tumor necrosis factor-α impairs kisspeptin signaling in human gonadotropin-releasing hormone primary neurons. J Clin Endocrinol Metab 102:46–56. https://doi.org/10.1210/jc.2016-2115 Hosseini R, Ferns GA, Sahebkar A, Mirshekar MA, Jalali M (2021) Zinc supplementation is associated with a reduction in serum markers of inflammation and oxidative stress in adults: a systematic review and meta-analysis of randomized controlled trials. Cytokine 138:155396. https://doi.org/10.1016/j.cyto.2020.155396 Ju W, Li X, Li Z, Wu GR, Fu XF, Yang XM, Zhang XQ, Gao XB (2017) The effect of selenium supplementation on coronary heart disease: a systematic review and meta-analysis of randomized controlled trials. J Trace Elem Med Biol 44:8–16. https://doi.org/10.1016/j.jtemb.2017.04.009 Asbaghi O, Sadeghian M, Nazarian B, Sarreshtedari M, Mozaffari-Khosravi H, Maleki V, Alizadeh M, Shokri A, Sadeghi O (2020) The effect of vitamin E supplementation on selected inflammatory biomarkers in adults: a systematic review and meta-analysis of randomized clinical trials. Sci Rep 10:17234. https://doi.org/10.1038/s41598-020-73741-6 Ellulu MS, Rahmat A, Patimah I, Khaza’ai H, Abed Y (2015) Effect of vitamin C on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: a randomized controlled trial. Drug Des Devel Ther 9:3405–3412. https://doi.org/10.2147/DDDT.S83144 Gammoh NZ, Rink L (2017) Zinc in infection and inflammation. Nutrients 9:624. https://doi.org/10.3390/nu9060624 Fesahat F, Norouzi E, Seifati SM, Hamidian S, Hosseini A, Zare F (2022) Impact of vitamin C on gene expression profile of inflammatory and anti-inflammatory cytokines in the male partners of couples with recurrent pregnancy loss. Int J Inflam 2022:1222533. https://doi.org/10.1155/2022/1222533 Poles J, Karhu E, McGill M, McDaniel HR, Lewis JE (2021) The effects of twenty-four nutrients and phytonutrients on immune system function and inflammation: a narrative review. J Clin Transl Res 7:333–376 Hosseini B, Berthon BS, Saedisomeolia A, Starkey MR, Collison A, Wark PAB, Wood LG (2018) Effects of fruit and vegetable consumption on inflammatory biomarkers and immune cell populations: a systematic literature review and meta-analysis. Am J Clin Nutr 108:136–155. https://doi.org/10.1093/ajcn/nqy082 Hadad N, Levy R (2012) The synergistic anti-inflammatory effects of lycopene, lutein, β-carotene, and carnosic acid combinations via redox-based inhibition of NF-κB signaling. Free Radic Biol Med 53:1381–1391. https://doi.org/10.1016/j.freeradbiomed.2012.07.078 Valenzuela CA, Baker EJ, Miles EA, Calder PC (2019) Eighteen-carbon trans fatty acids and inflammation in the context of atherosclerosis. Prog Lipid Res 76:101009. https://doi.org/10.1016/j.plipres.2019.101009 Hirata Y, Takahashi M, Kudoh Y, Kano K, Kawana H, Makide K, Shinoda Y, Yabuki Y, Fukunaga K, Aoki J, Noguchi T, Matsuzawa A (2017) trans-Fatty acids promote proinflammatory signaling and cell death by stimulating the apoptosis signal-regulating kinase 1 (ASK1)-p38 pathway. J Biol Chem 292:8174–8185. https://doi.org/10.1074/jbc.M116.771519 Su H, Liu R, Chang M, Huang J, Wang X (2017) Dietary linoleic acid intake and blood inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Food Funct 8:3091–3103. https://doi.org/10.1039/c7fo00433h Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, Armanini F, Truong DT, Manara S, Zolfo M, Beghini F, Bertorelli R, De Sanctis V, Bariletti I, Canto R, Clementi R, Cologna M, Crifò T, Cusumano G, Gottardi S, Innamorati C, Masè C, Postai D, Savoi D, Duranti S, Lugli GA, Mancabelli L, Turroni F, Ferrario C, Milani C, Mangifesta M, Anzalone R, Viappiani A, Yassour M, Vlamakis H, Xavier R, Collado CM, Koren O, Tateo S, Soffiati M, Pedrotti A, Ventura M, Huttenhower C, Bork P, Segata N (2018) Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24:133-145.e5. https://doi.org/10.1016/j.chom.2018.06.005 Shankar K, Harrell A, Liu X, Gilchrist JM, Ronis MJJ, Badger TM (2008) Maternal obesity at conception programs obesity in the offspring. Am J Physiol Regul Integr Comp Physiol 294:R528–R538. https://doi.org/10.1152/ajpregu.00316.2007 Gali Ramamoorthy T, Allen T-J, Davies A, Harno E, Sefton C, Murgatroyd C, White A (2018) Maternal overnutrition programs epigenetic changes in the regulatory regions of hypothalamic Pomc in the offspring of rats. Int J Obes (Lond) 42:1431–1444. https://doi.org/10.1038/s41366-018-0094-1 Seki Y, Suzuki M, Guo X, Glenn AS, Vuguin PM, Fiallo A, Du Q, Ko Y-A, Yu Y, Susztak K, Zheng D, Greally JM, Katz EB, Charron MJ (2017) In utero exposure to a high-fat diet programs hepatic hypermethylation and gene dysregulation and development of metabolic syndrome in male mice. Endocrinology 158:2860–2872. https://doi.org/10.1210/en.2017-00334 Strakovsky RS, Zhang X, Zhou D, Pan Y-X (2014) The regulation of hepatic Pon1 by a maternal high-fat diet is gender specific and may occur through promoter histone modifications in neonatal rats. J Nutr Biochem 25:170–176. https://doi.org/10.1016/j.jnutbio.2013.09.016 Lecoutre S, Oger F, Pourpe C, Butruille L, Marousez L, Dickes-Coopman A, Laborie C, Guinez C, Lesage J, Vieau D, Junien C, Eberlé D, Gabory A, Eeckhoute J, Breton C (2017) Maternal obesity programs increased leptin gene expression in rat male offspring via epigenetic modifications in a depot-specific manner. Mol Metab 6:922–930. https://doi.org/10.1016/j.molmet.2017.05.010 Bouchard L, Hivert M-F, Guay S-P, St-Pierre J, Perron P, Brisson D (2012) Placental adiponectin gene DNA methylation levels are associated with mothers’ blood glucose concentration. Diabetes 61:1272–1280. https://doi.org/10.2337/db11-1160 Bouchard L, Thibault S, Guay S-P, Santure M, Monpetit A, St-Pierre J, Perron P, Brisson D (2010) Leptin gene epigenetic adaptation to impaired glucose metabolism during pregnancy. Diabetes Care 33:2436–2441. https://doi.org/10.2337/dc10-1024 Enquobahrie DA, Wander PL, Tadesse MG, Qiu C, Holzman C, Williams MA (2017) Maternal pre-pregnancy body mass index and circulating microRNAs in pregnancy. Obes Res Clin Pract 11:464–474. https://doi.org/10.1016/j.orcp.2016.10.287 Obermann-Borst SA, Eilers PHC, Tobi EW, de Jong FH, Slagboom PE, Heijmans BT, Steegers-Theunissen RPM (2013) Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children. Pediatr Res 74:344–349. https://doi.org/10.1038/pr.2013.95 Masuyama H, Mitsui T, Eguchi T, Tamada S, Hiramatsu Y (2016) The effects of paternal high-fat diet exposure on offspring metabolism with epigenetic changes in the mouse adiponectin and leptin gene promoters. Am J Physiol Endocrinol Metab 311:E236–E245. https://doi.org/10.1152/ajpendo.00095.2016 Cropley JE, Eaton SA, Aiken A, Young PE, Giannoulatou E, Ho JWK, Buckland ME, Keam SP, Hutvagner G, Humphreys DT, Langley KG, Henstridge DC, Martin DIK, Febbraio MA, Suter CM (2016) Male-lineage transmission of an acquired metabolic phenotype induced by grand-paternal obesity. Mol Metab 5:699–708. https://doi.org/10.1016/j.molmet.2016.06.008 Crisóstomo L, Jarak I, Rato LP, Raposo JF, Batterham RL, Oliveira PF, Alves MG (2021) Inheritable testicular metabolic memory of high-fat diet causes transgenerational sperm defects in mice. Sci Rep 11:9444. https://doi.org/10.1038/s41598-021-88981-3 Maleki BH, Tartibian B, Chehrazi M (2022) Effectiveness of exercise training on male factor infertility: a systematic review and network meta-analysis. Sports Health 14:508–517. https://doi.org/10.1177/19417381211055399 Caetano G, Bozinovic I, Dupont C, Léger D, Lévy R, Sermondade N (2021) Impact of sleep on female and male reproductive functions: a systematic review. Fertil Steril 115:715–731. https://doi.org/10.1016/j.fertnstert.2020.08.1429 Li Y, Lin H, Li Y, Cao J (2011) Association between socio-psycho-behavioral factors and male semen quality: systematic review and meta-analyses. Fertil Steril 95:116–123. https://doi.org/10.1016/j.fertnstert.2010.06.031 Boulicault M, Perret M, Galka J, Borsa A, Gompers A, Reiches M, Richardson S (2022) The future of sperm: a biovariability framework for understanding global sperm count trends. Hum Fertil (Camb) 25:888–902. https://doi.org/10.1080/14647273.2021.1917778 Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HWG, Behre HM, Haugen TB, Kruger T, Wang C, Mbizvo MT, Vogelsong KM (2010) World Health Organization reference values for human semen characteristics. Hum Reprod Update 16:231–245. https://doi.org/10.1093/humupd/dmp048 Rodprasert W, Virtanen HE, Sadov S, Perheentupa A, Skakkebaek NE, Jørgensen N, Toppari J (2019) An update on semen quality among young Finnish men and comparison with Danish data. Andrology 7:15–23. https://doi.org/10.1111/andr.12550 Bonde JP, Ernst E, Jensen TK, Hjollund NH, Kolstad H, Henriksen TB, Scheike T, Giwercman A, Olsen J, Skakkebaek NE (1998) Relation between semen quality and fertility: a population-based study of 430 first-pregnancy planners. Lancet 352:1172–1177. https://doi.org/10.1016/S0140-6736(97)10514-1 Slama R, Eustache F, Ducot B, Jensen TK, Jørgensen N, Horte A, Irvine S, Suominen J, Andersen AG, Auger J, Vierula M, Toppari J, Andersen AN, Keiding N, Skakkebaek NE, Spira A, Jouannet P (2002) Time to pregnancy and semen parameters: a cross-sectional study among fertile couples from four European cities. Hum Reprod 17:503–515. https://doi.org/10.1093/humrep/17.2.503 NCD Risk Factor Collaboration (2022) National adult body-mass index: region-specific data. https://www.ncdrisc.org/data-downloads-adiposity.html. Accessed 19 June 2022 Stein R (1980) The French sugar business in the eighteenth century: a quantitative study. Bus Hist 22:3–17. https://doi.org/10.1080/00076798000000001 R Core Team (2021) R: A language and environment for statistical computing Mangiafico SS (2022) rcompanion: functions to support extension education program evaluation. https://cran.r-project.org/package=rcompanion. Accessed 11 Apr 2022 Mangiafico SS (2016) Advanced parametric methods. In: Mangiafico SS (ed) Summary and analysis of extension program evaluation in R. pp 520–41. https://rcompanion.org/handbook/I_11.html Porter R (1996) The Cambridge illustrated history of medicine. Cambridge University Press, Cambridge Porter D (1994) The history of public health and the modern state. Editions Rodopi B. V., Atlanta, GA Roser M, Ortiz-Ospina E, Ritchie H (2019) Life expectancy, 1543 to 2019. https://ourworldindata.org/grapher/life-expectancy?tab=chart&country. Accessed 19 Nov 2022 Gapminder (2015) Child mortality rate, under age five: version 7. https://www.gapminder.org/data/documentation/gd005/. Accessed 19 Nov 2022 Gapminder (2020) Child mortality rate, under age five: version 11. https://www.gapminder.org/data/documentation/gd005/. Accessed 19 Nov 2022 Ritchie H, Spooner F, Roser M (2018) Twentieth century of deaths, United States, 1900 to 1998. https://ourworldindata.org/grapher/twentieth-century-of-deaths-us. Accessed 19 Nov 2022 US Natonal Center for Health Statistics (2001) Leading causes of death, 1900–1998. US Centers for Disease Control and Prevention, Atlanta, GA Gurven M, Kaplan H (2007) Longevity among hunter-gatherers: a cross-cultural examination. Popul Dev Rev 33:321–365. https://doi.org/10.1111/j.1728-4457.2007.00171.x Kelsey TW, Li LQ, Mitchell RT, Whelan A, Anderson RA, Wallace WHB (2014) A validated age-related normative model for male total testosterone shows increasing variance but no decline after age 40 years. PLoS One 9:e109346. https://doi.org/10.1371/journal.pone.0109346 Travison TG, Vesper HW, Orwoll E, Wu F, Kaufman JM, Wang Y, Lapauw B, Fiers T, Matsumoto AM, Bhasin S (2017) Harmonized reference ranges for circulating testosterone levels in men of four cohort studies in the United States and Europe. J Clin Endocrinol Metab 102:1161–1173. https://doi.org/10.1210/jc.2016-2935 Sikaris K, McLachlan RI, Kazlauskas R, de Kretser D, Holden CA, Handelsman DJ (2005) Reproductive hormone reference intervals for healthy fertile young men: evaluation of automated platform assays. J Clin Endocrinol Metab 90:5928–5936. https://doi.org/10.1210/jc.2005-0962 Louzada ML da C, Martins APB, Canella DS, Baraldi LG, Levy RB, Claro RM, Moubarac J-C, Cannon G, Monteiro CA (2015) Impact of ultra-processed foods on micronutrient content in the Brazilian diet. Rev Saude Publica 49:45. https://doi.org/10.1590/S0034-8910.2015049006211 Pourafshar S, Sharma B, Kranz S, Mallawaarachchi I, Kurland E, Ma JZ, Scialla JJ (2022) Patterns of fruit and vegetable intake in adults with and without chronic kidney disease in the United States. J Ren Nutr. https://doi.org/10.1053/j.jrn.2022.06.007