Dietary l-arginine supplementation of tilapia (Oreochromis niloticus) alters the microbial population and activates intestinal fatty acid oxidation

Senlin Li1, Chao Wang2, Zhenlong Wu3
1State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
2College of Biological Sciences, China Agricultural University, Beijing, China
3State Key Laboratory of Animal Nutrition,Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdallah A, Elemba E, Zhong Q, Sun Z (2020) Gastrointestinal interaction between dietary amino acids and gut microbiota: with special emphasis on host nutrition. Curr Protein Pept Sci 21(8):785–798. https://doi.org/10.2174/1389203721666200212095503

Agnello M, Cen L, Tran NC, Shi W, McLean JS, He X (2017) Arginine improves pH homeostasis via metabolism and microbiome modulation. J Dent Res 96(8):924–930. https://doi.org/10.1177/0022034517707512

Amabebe E, Robert FO, Agbalalah T, Orubu ESF (2020) Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. Br J Nutr 123(10):1127–1137. https://doi.org/10.1017/S0007114520000380

Araujo TR, Freitas IN, Vettorazzi JF, Batista TM, Santos-Silva JC, Bonfleur ML, Balbo SL, Boschero AC, Carneiro EM, Ribeiro RA (2017) Benefits of l-alanine or l-arginine supplementation against adiposity and glucose intolerance in monosodium glutamate-induced obesity. Eur J Nutr 56(6):2069–2080. https://doi.org/10.1007/s00394-016-1245-6

Araujo JR, Tazi A, Burlen-Defranoux O, Vichier-Guerre S, Nigro G, Licandro H, Demignot S, Sansonetti PJ (2020) Fermentation products of commensal bacteria alter enterocyte lipid metabolism. Cell Host Microbe 27(3):358. https://doi.org/10.1016/j.chom.2020.01.028

Bray GA, Bellanger T (2006) Epidemiology, trends, and morbidities of obesity and the metabolic syndrome. Endocrine 29(1):109–117. https://doi.org/10.1385/endo:29:1:109

Bunger M, van den Bosch HM, van der Meijde J, Kersten S, Hooiveld GJEJ, Muller M (2007) Genome-wide analysis of PPAR alpha activation in murine small intestine. Physiol Genom 30(2):192–204. https://doi.org/10.1152/physiolgenomics.00198.2006

Cant JP, McBride BW, Croom WJ (1996) The regulation of intestinal metabolism and its impact on whole animal energetics. J Anim Sci 74(10):2541–2553

Carmona-Antonanzas G, Tocher DR, Martinez-Rubio L, Leaver MJ (2014) Conservation of lipid metabolic gene transcriptional regulatory networks in fish and mammals. Gene 534(1):1–9. https://doi.org/10.1016/j.gene.2013.10.040

Chen J, Ma X, Yang Y, Dai Z, Wu Z, Wu G (2018) Glycine enhances expression of adiponectin and IL-10 in 3T3-L1 adipocytes without affecting adipogenesis and lipolysis. Amino Acids 50(5):629–640. https://doi.org/10.1007/s00726-018-2537-3

Clark JA, Coopersmith CM (2007) Intestinal crosstalk: a new paradigm for understanding the gut as the “motor” of critical illness. Shock 28(4):384–393. https://doi.org/10.1097/shk.0b013e31805569df

Dale K, Yadetie F, Muller MB, Pampanin DM, Gilabert A, Zhang X, Tairova Z, Haarr A, Lille-Langoy R, Lyche JL, Porte C, Karlsen OA, Goksoyr A (2020) Proteomics and lipidomics analyses reveal modulation of lipid metabolism by perfluoroalkyl substances in liver of Atlantic cod (Gadus morhua). Aquat Toxicol. https://doi.org/10.1016/j.aquatox.2020.105590

D’Aquila T, Zembroski AS, Buhman KK (2019) Diet induced obesity alters intestinal cytoplasmic lipid droplet morphology and proteome in the postprandial response to dietary fat. Front Physiol 10:180. https://doi.org/10.3389/fphys.2019.00180

Davalos-Salas M, Montgomery MK, Reehorst CM, Nightingale R, Ng I, Anderton H, Al-Obaidi S, Lesmana A, Scott CM, Ioannidis P, Kalra H, Keerthikumar S, Togel L, Rigopoulos A, Gong SJ, Williams DS, Yoganantharaja P, Bell-Anderson K, Mathivanan S, Gibert Y, Hiebert S, Scott AM, Watt MJ, Mariadason JM (2019a) Deletion of intestinal Hdac3 remodels the lipidome of enterocytes and protects mice from diet-induced obesity. Nat Commun 10(1):5291. https://doi.org/10.1038/s41467-019-13180-8

de Wit NJW, Bosch-Vermeulen H, de Groot PJ, Hooiveld GJEJ, Bromhaar MMG, Jansen J, Mueller M, van der Meer R (2008) The role of the small intestine in the development of dietary fat-induced obesity and insulin resistance in C57BL/6J mice. BMC Med Genom. https://doi.org/10.1186/1755-8794-1-14

Doktorova M, Zwarts I, Zutphen TV, Dijk THV, Bloks VW, Harkema L, Bruin A, Downes M, Evans RM, Verkade HJ, Jonker JW (2017) Intestinal PPARdelta protects against diet-induced obesity, insulin resistance and dyslipidemia. Sci Rep 7(1):846. https://doi.org/10.1038/s41598-017-00889-z

Gao R, Zhu C, Li H, Yin M, Pan C, Huang L, Kong C, Wang X, Zhang Y, Qu S, Qin H (2018) Dysbiosis signatures of gut microbiota along the sequence from healthy, young patients to those with overweight and obesity. Obesity 26(2):351–361. https://doi.org/10.1002/oby.22088

He A, Ning L, Chen L, Chen Y, Xing Q, Li J, Qiao F, Li D, Zhang M, Du Z (2015) Systemic adaptation of lipid metabolism in response to low- and high-fat diet in Nile tilapia (Oreochromis niloticus). Physiol Rep. https://doi.org/10.14814/phy2.12485

Hills RD Jr, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR (2019) Gut microbiome: profound implications for diet and disease. Nutrients 11(7):1613. https://doi.org/10.3390/nu11071613

Hölttä-Vuori M, Salo V, Nyberg L, Brackmann C, Enejder A, Panula P, Ikonen E (2010) Zebrafish: gaining popularity in lipid research. Biochem J 429(2):235–242. https://doi.org/10.1042/BJ20100293

Hu S, Han M, Rezaei A, Li D, Wu G, Ma X (2017) l-Arginine modulates glucose and lipid metabolism in obesity and diabetes. Curr Protein Pept Sci 18(6):599–608. https://doi.org/10.2174/1389203717666160627074017

Hu S, Wang L, Yang D, Li L, Togo J, Wu Y, Liu Q, Li B, Li M, Wang G, Zhang X, Niu C, Li J, Xu Y, Couper E, Whittington-Davies A, Mazidi M, Luo L, Wang S, Douglas A, Speakman JR (2018) Dietary fat, but not protein or carbohydrate, regulates energy intake and causes adiposity in mice. Cell Metab 28(3):415. https://doi.org/10.1016/j.cmet.2018.06.010

Huntington GB, Varga GA, Glenn BP, Waldo DR (1988) Net absorption and oxygen-consumption by holstein steers fed alfalfa or orchardgrass silage at 2 equalized intakes. J Anim Sci 66(5):1292–1302

Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17(9):571–588. https://doi.org/10.1016/j.jnutbio.2005.12.001

Jobgen W, Meininger CJ, Jobgen SC, Li P, Lee M-J, Smith SB, Spencer TE, Fried SK, Wu G (2009) Dietary l-arginine supplementation reduces white fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139(2):230–237. https://doi.org/10.3945/jn.108.096362

Kaushik S, Cuervo AM (2016) AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA. Autophagy 12(2):432–438. https://doi.org/10.1080/15548627.2015.1124226

Kimura R, Takahashi N, Lin S, Goto T, Murota K, Nakata R, Inoue H, Kawada T (2013) DHA attenuates postprandial hyperlipidemia via activating PPAR alpha in intestinal epithelial cells. J Lipid Res 54(12):3258–3268. https://doi.org/10.1194/jlr.M034942

Ko CW, Qu J, Black DD, Tso P (2020) Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol 17(3):169–183. https://doi.org/10.1038/s41575-019-0250-7

Kolderman E, Bettampadi D, Samarian D, Dowd SE, Foxman B, Jakubovics NS, Rickard AH (2015) l-Arginine destabilizes oral multi-species biofilm communities developed in human saliva. PLoS ONE. https://doi.org/10.1371/journal.pone.0121835

Kondo H, Minegishi Y, Komine Y, Mori T, Matsumoto I, Abe K, Tokimitsu I, Hase T, Murase T (2006) Differential regulation of intestinal lipid metabolism-related genes in obesity-resistant A/J vs. obesity-prone C57BL/6J mice. Am J Physiol Endocrinol Metab 291(5):E1092–E1099. https://doi.org/10.1152/ajpendo.00583.2005

Lee BG, Zhu JB, Wolins NE, Cheng JX, Buhman KK (2009) Differential association of adipophilin and TIP47 proteins with cytoplasmic lipid droplets in mouse enterocytes during dietary fat absorption. Biochim Biophys Acta 1791(12):1173–1180. https://doi.org/10.1016/j.bbalip.2009.08.002

Li Z, Liu H, Xu B, Wang Y (2019) Enterotoxigenic escherichia coli interferes FATP4-dependent long-chain fatty acid uptake of intestinal epithelial enterocytes via phosphorylation of ERK1/2-PPAR gamma pathway. Front Physiol 10:798. https://doi.org/10.3389/fphys.2019.00798

Li S, Zhang Y, Liu N, Chen J, Guo L, Dai Z, Wang C, Wu Z, Wu G (2020) Dietary l-arginine supplementation reduces lipid accretion by regulating fatty acid metabolism in Nile tilapia (Oreochromis niloticus). J Anim Sci Biotechnol. https://doi.org/10.1186/s40104-020-00486-7

Liang H, Dai Z, Kou J, Sun K, Chen J, Yang Y, Wu G, Wu Z (2019) Dietary l-tryptophan supplementation enhances the intestinal mucosal barrier function in weaned piglets: implication of tryptophan-metabolizing microbiota. Int J Mol Sci. https://doi.org/10.3390/ijms20010020

Liu N, Ma X, Luo X, Zhang Y, He Y, Dai Z, Yang Y, Wu G, Wu Z (2018) L-Glutamine attenuates apoptosis in porcine enterocytes by regulating glutathione-related redox homeostasis. J Nutr 148(4):526–534. https://doi.org/10.1093/jn/nxx062

Ma X, Han M, Li D, Hu S, Gilbreath KR, Bazer FW, Wu G (2017) l-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway. Amino Acids 49(5):957–964. https://doi.org/10.1007/s00726-017-2399-0

MacLellan A, Connors J, Grant S, Cahill L, Langille MGI, Van Limbergen J (2017) The impact of exclusive enteral nutrition (EEN) on the gut microbiome in Crohn’s disease: a review. Nutrients. https://doi.org/10.3390/nu9050447

Martinez-Guryn K, Hubert N, Frazier K, Urlass S, Musch MW, Ojeda P, Pierre JF, Miyoshi J, Sontag TJ, Cham CM, Reardon CA, Leone V, Chang EB (2018) Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 23(4):458. https://doi.org/10.1016/j.chom.2018.03.011

McKnight JR, Satterfield MC, Jobgen WS, Smith SB, Spencer TE, Meininger CJ, McNeal CJ, Wu GY (2010) Beneficial effects of l-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39(2):349–357. https://doi.org/10.1007/s00726-010-0598-z

Meek TH, Eisenmann JC, Garland T Jr (2010) Western diet increases wheel running in mice selectively bred for high voluntary wheel running. Int J Obes 34(6):960–969. https://doi.org/10.1038/ijo.2010.25

Menni C, Jackson MA, Pallister T, Steves CJ, Spector TD, Valdes AM (2017) Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int J Obes 41(7):1099–1105. https://doi.org/10.1038/ijo.2017.66

Nissim I, Daikhin Y, Nissim I, Luhovyy B, Horyn O, Wehrli SL, Yudkoff M (2006) Agmatine stimulates hepatic fatty acid oxidation: a possible mechanism for up-regulation of ureagenesis. J Biol Chem 281(13):8486–8496. https://doi.org/10.1074/jbc.M506984200

Pan X, Hussain MM (2012) Gut triglyceride production. Biochim Biophys Acta 1821(5):727–735. https://doi.org/10.1016/j.bbalip.2011.09.013

Piletz JE, Aricioglu F, Cheng J-T, Fairbanks CA, Gilad VH, Haenisch B, Halaris A, Hong S, Lee JE, Li J, Liu P, Molderings GJ, Rodrigues ALS, Satriano J, Seong GJ, Wilcox G, Wu N, Gilad GM (2013) Agmatine: clinical applications after 100 years in translation. Drug Discov Today 18(17–18):880–893. https://doi.org/10.1016/j.drudis.2013.05.017

Raasch W, Regunathan S, Li G, Reis DJ (1995) Agmatine, the bacterial amine, is widely distributed in mammalian-tissues. Life Sci 56(26):2319–2330. https://doi.org/10.1016/0024-3205(95)00226-v

Rabot S, Membrez M, Bruneau A, Gerard P, Harach T, Moser M, Raymond F, Mansourian R, Chou CJ (2010) Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. Faseb J 24(12):4948. https://doi.org/10.1096/fj.10-164921

Ren W, Chen S, Yin J, Duan J, Li T, Liu G, Feng Z, Tan B, Yin Y, Wu G (2014) Dietary arginine supplementation of mice alters the microbial population and activates intestinal innate immunity. J Nutr 144(6):988–995. https://doi.org/10.3945/jn.114.192120

Reschly EJ, Ai N, Welsh WJ, Ekins S, Hagey LR, Krasowski MD (2008) Ligand specificity and evolution of liver X receptors. J Steroid Biochem Mol Biol 110(1–2):83–94. https://doi.org/10.1016/j.jsbmb.2008.02.007

Reynolds CK, Tyrrell HF, Reynolds PJ (1991) Effects of diet forage-to-concentrate ratio and intake on energy-metabolism in growing beef heifers-whole-body energy and nitrogen-balance and visceral heat-production. J Nutr 121(7):994–1003

Ricchi M, Odoardi MR, Carulli L, Anzivino C, Ballestri S, Pinetti A, Fantoni LI, Marra F, Bertolotti M, Banni S, Lonardo A, Carulli N, Loria P (2009) Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J Gastroenterol Hepatol 24(5):830–840. https://doi.org/10.1111/j.1440-1746.2008.05733.x

Semova I, Carten JD, Stombaugh J, Mackey LC, Knight R, Farber SA, Rawls JF (2012) Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12(3):277–288. https://doi.org/10.1016/j.chom.2012.08.003

Serena C, Ceperuelo-Mallafre V, Keiran N, Isabel Queipo-Ortuno M, Bernal R, Gomez-Huelgas R, Urpi-Sarda M, Sabater M, Perez-Brocal V, Andres-Lacueva C, Moya A, Tinahones FJ, Manuel Fernandez-Real J, Vendrell J, Fernandez-Veledo S (2018) Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME J 12(7):1642–1657. https://doi.org/10.1038/s41396-018-0068-2

Sheridan MA (1988) Lipid dynamics in fish: aspects of absorption, transportation, deposition and mobilization. Comp Biochem Physiol B 90(4):679–690. https://doi.org/10.1016/0305-0491(88)90322-7

Song YF, Gao Y, Hogstrand C, Li DD, Pan YX, Luo Z (2018) Upstream regulators of apoptosis mediates methionine-induced changes of lipid metabolism. Cell Signal 51:176–190. https://doi.org/10.1016/j.cellsig.2018.08.005

Storch J, Zhou YX, Lagakos WS (2008) Metabolism of apical versus basolateral sn-2-monoacylglycerol and fatty acids in rodent small intestine. J Lipid Res 49(8):1762–1769. https://doi.org/10.1194/jlr.M800116-JLR200

Tan B, Yin Y, Liu Z, Tang W, Xu H, Kong X, Li X, Yao K, Gu W, Smith SB, Wu Z (2011) Dietary l-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle. J Nutr Biochem 22(5):441–445. https://doi.org/10.1016/j.jnutbio.2010.03.012

Turnbaugh PJ, Baeckhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3(4):213–223. https://doi.org/10.1016/j.chom.2008.02.015

Uchida A, Slipchenko MN, Cheng JX, Buhman KK (2011) Fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, alters triglyceride metabolism in enterocytes of mice. Biochim Biophys Acta 3:170–176. https://doi.org/10.1016/j.bbalip.2010.12.011

Vega RB, Huss JM, Kelly DP (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20(5):1868–1876. https://doi.org/10.1128/mcb.20.5.1868-1876.2000

Vogel-van den Bosch HM, Bunger M, Groot PJ, Bosch-Vermeulen H, Hooiveld GJEJ, Muller M (2008) PPARalpha-mediated effects of dietary lipids on intestinal barrier gene expression. BMC Genom 9(231):1–13

Wan Y, Yuan J, Li J, Li H, Yin K, Wang F, Li D (2020) Overweight and underweight status are linked to specific gut microbiota and intestinal tricarboxylic acid cycle intermediates. Clin Nutr 39(10):3189–3198. https://doi.org/10.1016/j.clnu.2020.02.014

Wang B, Feng L, Chen GF, Jiang WD, Liu Y, Kuang SY, Jiang J, Tang L, Wu P, Tang WN, Zhang YA, Zhao J, Zhou XQ (2016) Jian carp (Cyprinus carpio var. Jian) intestinal immune responses, antioxidant status and tight junction protein mRNA expression are modulated via Nrf2 and Pkc in response to dietary arginine deficiency. Fish Shellfish Immunol 51:116–124. https://doi.org/10.1016/j.fsi.2015.10.032

Wang, (2016) Glycine stimulates protein synthesis and inhibits oxidative stress in pig small intestinal epithelial cells (vol 144, pg 1540, 2014). J Nutr 146(9):1813–1813. https://doi.org/10.3945/jn.116.236612

Wen J, Rawls JF (2020) Feeling the burn: intestinal epithelial cells modify their lipid metabolism in response to bacterial fermentation products. Cell Host Microbe 27(3):314–316. https://doi.org/10.1016/j.chom.2020.02.009

Windmueller HG, Spaeth AE (1976) Metabolism of absorbed aspartate, asparagine, and arginine by rat small-intestine invivo. Arch Biochem Biophys 175(2):670–676. https://doi.org/10.1016/0003-9861(76)90558-0

Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128(8):1249–1252

Wu G, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17. https://doi.org/10.1042/bj3360001

Wu Z, Hou Y, Hu S, Bazer FW, Meininger CJ, McNeal CJ, Wu G (2016) Catabolism and safety of supplemental l-arginine in animals. Amino Acids 48(7):1541–1552. https://doi.org/10.1007/s00726-016-2245-9

Zhang M, Li M, Sheng Y, Tan F, Chen L, Cann I, Du Z (2020) Citrobacter species increase energy harvest by modulating intestinal microbiota in fish: nondominant species play important functions. Msystems 5(3):e00303–e00320. https://doi.org/10.1128/mSystems.00303-20

Zhang Y, Zhang P, Shang X, Lu Y, Li Y (2021) Exposure of lead on intestinal structural integrity and the diversity of gut microbiota of common carp. Comp Biochem Physiol C Toxicol Pharmacol 239:108877. https://doi.org/10.1016/j.cbpc.2020.108877