Dietary fibre in gastrointestinal health and disease

Nature Reviews Gastroenterology and Hepatology - Tập 18 Số 2 - Trang 101-116 - 2021
Samantha K. Gill1, Megan Rossi1, Balázs Bajka1, Kevin Whelan1
1King's College London, Department of Nutritional Sciences, London, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hipsley, E. H. Dietary “fibre” and pregnancy toxaemia. Br. Med. J. 2, 420–422 (1953).

Trowell, H. et al. Letter: Dietary fibre redefined. Lancet 1, 967 (1976).

Scientific Advisory Committee on Nutrition. Carbohydrates and Health https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/445503/SACN_Carbohydrates_and_Health.pdf (2015).

Reynolds, A. et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 393, 434–445 (2019).

EC. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004 (Text with EEA relevance). Off. J. Eur. Union 20, 168–213 (2011).

Office of the Federal Register. Federal Register 81, 33581–34240 (2016).

Mayor, S. Eating more fibre linked to reduced risk of non-communicable diseases and death, review finds. BMJ 364, l159 (2019).

National Institute for Health and Care Excellence. Irritable bowel syndrome in adults: diagnosis and management (NICE, 2017).

McKenzie, Y. A. et al. British Dietetic Association systematic review and evidence-based practice guidelines for the dietary management of irritable bowel syndrome in adults (2016 update). J. Hum. Nutr. Diet. 29, 549–575 (2016).

Lamb, C. A. et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 68, s1–s106 (2019).

National Institute for Health and Care Excellence. Diverticular disease: diagnosis and management. https://www.nice.org.uk/guidance/ng147 (NICE, 2019).

World Gastroenterology Organisation WGO Practice Guideline – Diet and the Gut (WGO, 2018).

National Institute for Health and Care Excellence. Constipation: management. (NICE, 2020).

Jarvis, M. C. Plant cell walls: supramolecular assemblies. Food Hydrocoll. 25, 257–262 (2011).

Grundy, M. M. L. et al. Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. Br. J. Nutr. 116, 816–833 (2016).

Carmody, R. N. et al. Cooking shapes the structure and function of the gut microbiome. Nat. Microbiol. 4, 2052–2063 (2019).

Lockyer, S. & Nugent, A. P. Health effects of resistant starch. Nutr. Bull. 42, 10–41 (2017).

Lovegrove, A. et al. Role of polysaccharides in food, digestion, and health. Crit. Rev. Food Sci. Nutr. 57, 237–253 (2017).

Sikora, P., Tosh, S. M., Brummer, Y. & Olsson, O. Identification of high β-glucan oat lines and localization and chemical characterization of their seed kernel β-glucans. Food Chem. 137, 83–91 (2013).

Ngouémazong, D. E. et al. Quantifying structural characteristics of partially de-esterified pectins. Food Hydrocoll. 25, 434–443 (2011).

Nasatto, P. L. et al. Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers 7, 777–803 (2015).

Cummings, J. H. & Stephen, A. M. Carbohydrate terminology and classification. Eur. J. Clin. Nutr. 61, S5–S18 (2007).

Food and Agriculture Organization. Food energy – methods of analysis and conversion factors. Report of a Technical Workshop no. 77. (FAO, Rome, 2003).

Renard, C. M. G. C., Crepeau, M. J. & Thibault, J. F. Influence of ionic strength, pH and dielectric constant on hydration properties of native and modified fibres from sugar-beet and wheat bran. Ind. Crop. Prod. 3, 75–84 (1994).

Fleury, N. & Lahaye, M. Chemical and physico-chemical characterisation of fibres from Laminaria digitata (kombu breton): a physiological approach. J. Sci. Food Agric. 55, 389–400 (1991).

Gibb, R. D., McRorie, J. W. Jr., Russell, D. A., Hasselblad, V. & D’Alessio, D. A. Psyllium fiber improves glycemic control proportional to loss of glycemic control: a meta-analysis of data in euglycemic subjects, patients at risk of type 2 diabetes mellitus, and patients being treated for type 2 diabetes mellitus. Am. J. Clin. Nutr. 102, 1604–1614 (2015).

Dhital, S., Gidley, M. J. & Warren, F. J. Inhibition of α-amylase activity by cellulose: kinetic analysis and nutritional implications. Carbohydr. Polym. 123, 305–312 (2015).

Takahashi, T., Karita, S., Ogawa, N. & Goto, M. Crystalline cellulose reduces plasma glucose concentrations and stimulates water absorption by increasing the digesta viscosity in rats. J. Nutr. 135, 2405–2410 (2005).

Ratanpaul, V., Williams, B. A., Black, J. L. & Gidley, M. J. Review: Effects of fibre, grain starch digestion rate and the ileal brake on voluntary feed intake in pigs. Animal 13, 2745–2754 (2019).

Dikeman, C. L. & Fahey, G. C. Viscosity as related to dietary fiber: a review. Crit. Rev. Food Sci. Nutr. 46, 649–663 (2006).

Gawkowska, D., Cybulska, J. & Zdunek, A. Structure-related gelling of pectins and linking with other natural compounds: a review. Polymers. 10, 762 (2018).

Morris, E. R. in Dietary Fibre — A Component of Food. (eds Schweizer, T. F. & Edwards, C. A.) 41–56 (Springer, 1992).

Morris, E. R. in Advanced Dietary Fibre Technology Ch. 4 (eds McCleary, B. V. & Prosky, L.) (Blackwell Science Ltd, 2001).

Müller, M., Canfora, E. E. & Blaak, E. E. Gastrointestinal transit time, glucose homeostasis and metabolic health: modulation by dietary fibers. Nutrients 10, 275 (2018).

Chutkan, R., Fahey, G., Wright, W. L. & McRorie, J. Viscous versus nonviscous soluble fiber supplements: mechanisms and evidence for fiber-specific health benefits. J. Am. Acad. Nurse Pract. 24, 476–487 (2012).

Vuksan, V. et al. Viscosity rather than quantity of dietary fibre predicts cholesterol-lowering effect in healthy individuals. Br. J. Nutr. 106, 1349–1352 (2011).

Topping, D. L., Oakenfull, D., Trimble, R. P. & Illman, R. J. A viscous fibre (methylcellulose) lowers blood glucose and plasma triacylglycerols and increases liver glycogen independently of volatile fatty acid production in the rat. Br. J. Nutr. 59, 21–30 (1988).

Anderson, J. W. et al. Cholesterol-lowering effects of psyllium intake adjunctive to diet therapy in men and women with hypercholesterolemia: meta-analysis of 8 controlled trials. Am. J. Clin. Nutr. 71, 472–479 (2000).

Bergmann, J. F. et al. Correlation between echographic gastric emptying and appetite: influence of psyllium. Gut 33, 1042–1043 (1992).

Fabek, H., Messerschmidt, S., Brulport, V. & Goff, H. D. The effect of in vitro digestive processes on the viscosity of dietary fibres and their influence on glucose diffusion. Food Hydrocoll. 35, 718–726 (2014).

EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific opinion on the substantiation of a health claim related to barley beta-glucans and lowering of blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J. 9, 2470 (2011).

Degirolamo, C., Modica, S., Palasciano, G. & Moschetta, A. Bile acids and colon cancer: solving the puzzle with nuclear receptors. Trends Mol. Med. 17, 564–572 (2011).

Zacherl, C., Eisner, P. & Engel, K.-H. In vitro model to correlate viscosity and bile acid-binding capacity of digested water-soluble and insoluble dietary fibres. Food Chem. 126, 423–428 (2011).

Oh, H. et al. Different dietary fibre sources and risks of colorectal cancer and adenoma: a dose–response meta-analysis of prospective studies. Br. J. Nutr. 122, 605–615 (2019).

Qi, J. et al. Cellulosic fraction of rice bran fibre alters the conformation and inhibits the activity of porcine pancreatic lipase. J. Funct. Foods 19, 39–48 (2015).

Leng-Peschlow, E. Interference of dietary fibres with gastrointestinal enzymes in vitro. Digestion 44, 200–210 (1989).

Mackie, A. R. et al. Sodium alginate decreases the permeability of intestinal mucus. Food Hydrocoll. 52, 749–755 (2016).

Mackie, A., Rigby, N., Harvey, P. & Bajka, B. Increasing dietary oat fibre decreases the permeability of intestinal mucus. J. Funct. Foods 26, 418–427 (2016).

Fåk, F. et al. The physico-chemical properties of dietary fibre determine metabolic responses, short-chain fatty acid profiles and gut microbiota composition in rats fed low- and high-fat diets. PLoS ONE 10, e0127252 (2015).

De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).

Clemente, J. C. et al. The microbiome of uncontacted Amerindians. Sci Adv. 1, e1500183 (2015).

Martinez, I. et al. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep. 11, 527–538 (2015).

Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 3654 (2014).

Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–806 (2017).

Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

El Kaoutari, A., Armougom, F., Gordon, J. I., Raoult, D. & Henrissat, B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol. 11, 497–504 (2013).

Ze, X., Duncan, S. H., Louis, P. & Flint, H. J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6, 1535–1543 (2012).

Stephen, A. M. et al. Dietary fibre in Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 30, 149–190 (2017).

McRorie, J. Clinical data support that psyllium is not fermented in the gut. Am. J. Gastroenterol. 108, 1541 (2013).

Yao, C. K. et al. Poor reproducibility of breath hydrogen testing: implications for its application in functional bowel disorders. U Eur. Gastroenterol. J. 5, 284–292 (2017).

Spiller, R. & Marciani, L. Intraluminal impact of food: new insights from MRI. Nutrients 11, 1147 (2019).

Major, G. et al. Demonstration of differences in colonic volumes, transit, chyme consistency, and response to psyllium between healthy and constipated subjects using magnetic resonance imaging. Neurogastroenterol. Motil. 30, e13400 (2018).

Gunn, D. et al. Contrasting effects of viscous and particulate fibers on colonic fermentation in vitro and in vivo, and their impact on intestinal water studied by MRI in a randomized trial. Am. J. Clin. Nutr. 112, 595–602 (2020).

Cuervo, A., Salazar, N., Ruas-Madiedo, P., Gueimonde, M. & Gonzalez, S. Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly. Nutr. Res. 33, 811–816 (2013).

Soret, R. et al. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 138, 1772–1782 (2010).

Gill, P. A., van Zelm, M. C., Muir, J. G. & Gibson, P. R. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment. Pharmacol. Ther. 48, 15–34 (2018).

Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

Hiippala, K. et al. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation. Nutrients 10, 988 (2018).

Mithieux, G. Metabolic effects of portal vein sensing. Diabetes Obes. Metab. 16, 56–60 (2014).

Henningsson, Å., Björck, I. & Nyman, M. Short-chain fatty acid formation at fermentation of indigestible carbohydrates. Näringsforskning 45, 165–168 (2001).

Patnode, M. L. et al. Interspecies competition impacts targeted manipulation of human gut bacteria by fiber-derived glycans. Cell 179, 59–73.e13 (2019).

Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Backhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

Reichardt, N. et al. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. ISME J. 12, 610–622 (2018).

Titgemeyer, E. C., Bourquin, L. D., Fahey, G. C. Jr & Garleb, K. A. Fermentability of various fiber sources by human fecal bacteria in vitro. Am. J. Clin. Nutr. 53, 1418–1424 (1991).

Mortensen, P. B. & Nordgaard-Andersen, I. The dependence of the in vitro fermentation of dietary fibre to short-chain fatty acids on the contents of soluble non-starch polysaccharides. Scand. J. Gastroenterol. 28, 418–422 (1993).

Bourquin, L. D., Titgemeyer, E. C., Fahey, G. C. Jr. & Garleb, K. A. Fermentation of dietary fibre by human colonic bacteria: disappearance of, short-chain fatty acid production from, and potential water-holding capacity of, various substrates. Scand. J. Gastroenterol. 28, 249–255 (1993).

Pylkas, A. M., Juneja, L. R. & Slavin, J. L. Comparison of different fibers for in vitro production of short chain fatty acids by intestinal microflora. J. Med. Food 8, 113–116 (2005).

Lewis, S. J. & Heaton, K. W. Increasing butyrate concentration in the distal colon by accelerating intestinal transit. Gut 41, 245–251 (1997).

Sonnenburg, E. D. & Sonnenburg, J. L. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 20, 779–786 (2014).

Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21 (2016).

Brownlee, I. A., Havler, M. E., Dettmar, P. W., Allen, A. & Pearson, J. P. Colonic mucus: secretion and turnover in relation to dietary fibre intake. Proc. Nutr. Soc. 62, 245–249 (2003).

Earle, K. A. et al. Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe 18, 478–488 (2015).

Hedemann, M. S., Theil, P. K. & Bach Knudsen, K. E. The thickness of the intestinal mucous layer in the colon of rats fed various sources of non-digestible carbohydrates is positively correlated with the pool of SCFA but negatively correlated with the proportion of butyric acid in digesta. Br. J. Nutr. 102, 117–125 (2009).

Riva, A. et al. A fiber-deprived diet disturbs the fine-scale spatial architecture of the murine colon microbiome. Nat. Commun. 10, 4366 (2019).

Kerckhoffs, A. P. et al. Lower Bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients. World J. Gastroenterol. 15, 2887–2892 (2009).

Parkes, G. C. et al. Distinct microbial populations exist in the mucosa-associated microbiota of sub-groups of irritable bowel syndrome. Neurogastroenterol. Motil. 24, 31–39 (2012).

Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79 (2012).

Rajca, S. et al. Alterations in the intestinal microbiome (dysbiosis) as a predictor of relapse after infliximab withdrawal in Crohn’s disease. Inflamm. Bowel Dis. 20, 978–986 (2014).

Wills, E. S. et al. Fecal microbial composition of ulcerative colitis and Crohn’s disease patients in remission and subsequent exacerbation. PLoS ONE 9, e90981 (2014).

Grundy, M. M. L. et al. The impact of oat structure and β-glucan on in vitro lipid digestion. J. Funct. Foods 38, 378–388 (2017).

Edwards, C. H. et al. Manipulation of starch bioaccessibility in wheat endosperm to regulate starch digestion, postprandial glycemia, insulinemia, and gut hormone responses: a randomized controlled trial in healthy ileostomy participants. Am. J. Clin. Nutr. 102, 791–800 (2015).

Stewart, M. L. & Slavin, J. L. Particle size and fraction of wheat bran influence short-chain fatty acid production in vitro. Br. J. Nutr. 102, 1404–1407 (2009).

Raghavendra, S. N. et al. Grinding characteristics and hydration properties of coconut residue: a source of dietary fiber. J. Food Eng. 72, 281–286 (2006).

Tomlin, J. & Read, N. W. Laxative properties of indigestible plastic particles. BMJ 297, 1175–1176 (1988).

Lewis, S. J. & Heaton, K. W. Stool form scale as a useful guide to intestinal transit time. Scand. J. Gastroenterol. 32, 920–924 (1997).

Guillon, F., Auffret, A., Robertson, J. A., Thibault, J. F. & Barry, J. L. Relationships between physical characteristics of sugar-beet fibre and its fermentability by human faecal flora. Carbohydr. Polym. 37, 185–197 (1998).

Harland, B. F. Dietary fibre and mineral bioavailability. Nutr. Res. Rev. 2, 133–147 (1989).

Aslam, M. F., Ellis, P. R., Berry, S. E., Latunde-Dada, G. O. & Sharp, P. A. Enhancing mineral bioavailability from cereals: current strategies and future perspectives. Nutr. Bull. 43, 184–188 (2018).

Latunde-Dada, G. O. et al. Micromilling enhances iron bioaccessibility from wholegrain wheat. J. Agric. Food Chem. 62, 11222–11227 (2014).

Abrams, S. A., Griffin, I. J. & Hawthorne, K. M. Young adolescents who respond to an inulin-type fructan substantially increase total absorbed calcium and daily calcium accretion to the skeleton. J. Nutr. 137, 2524S–2526S (2007).

Whisner, C. M. et al. Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind cross-over trial. Br. J. Nutr. 110, 1292–1303 (2013).

Kasper, H., Rabast, U., Fassl, H. & Fehle, F. The effect of dietary fiber on the postprandial serum vitamin A concentration in man. Am. J. Clin. Nutr. 32, 1847–1849 (1979).

Basu, T. K. & Donaldson, D. Intestinal absorption in health and disease: micronutrients. Best Pract. Res. Clin. Gastroenterol. 17, 957–979 (2003).

Adams, S., Sello, C., Qin, G.-X., Che, D. & Han, R. Does dietary fiber affect the levels of nutritional components after feed formulation? Fibers 6, 29 (2018).

Chan, Y.-M., Aufreiter, S., O’Keefe, S. J. & O’Connor, D. L. Switching to a fibre-rich and low-fat diet increases colonic folate contents among African Americans. Appl. Physiol. Nutr. Metab. 44, 127–132 (2018).

Riedl, J., Linseisen, J., Hoffmann, J. & Wolfram, G. Some dietary fibers reduce the absorption of carotenoids in women. J. Nutr. 129, 2170–2176 (1999).

Yajima, T. Contractile effect of short-chain fatty acids on the isolated colon of the rat. J. Physiol. 368, 667–678 (1985).

Bueno, L., Praddaude, F., Fioramonti, J. & Ruckebusch, Y. Effect of dietary fiber on gastrointestinal motility and jejunal transit time in dogs. Gastroenterology. 80, 701–707 (1981).

de Vries, J., Miller, P. E. & Verbeke, K. Effects of cereal fiber on bowel function: a systematic review of intervention trials. World J. Gastroenterol. 21, 8952–8963 (2015).

Brodribb, A. J. & Groves, C. Effect of bran particle size on stool weight. Gut 19, 60–63 (1978).

Burkitt, D. P., Walker, A. R. & Painter, N. S. Effect of dietary fibre on stools and the transit-times, and its role in the causation of disease. Lancet 2, 1408–1412 (1972).

Harvey, R. F., Pomare, E. W. & Heaton, K. W. Effects of increased dietary fibre on intestinal transit. Lancet 1, 1278–1280 (1973).

Baird, I. M. et al. The effects of two dietary fiber supplements on gastrointestinal transit, stool weight and frequency, and bacterial flora, and fecal bile acids in normal subjects. Metabolism 26, 117–128 (1977).

Gear, J. S., Brodribb, A. J., Ware, A. & Mann, J. I. Fibre and bowel transit times. Br. J. Nutr. 45, 77–82 (1981).

Stevens, J., VanSoest, P. J., Robertson, J. B. & Levitsky, D. A. Comparison of the effects of psyllium and wheat bran on gastrointestinal transit time and stool characteristics. J. Am. Diet. Assoc. 88, 323–326 (1988).

Muller-Lissner, S. A. Effect of wheat bran on weight of stool and gastrointestinal transit time: a meta analysis. Br. Med. J. 296, 615–617 (1988).

Rao, S. S. et al. Investigation of colonic and whole-gut transit with wireless motility capsule and radiopaque markers in constipation. Clin. Gastroenterol. Hepatol. 7, 537–544 (2009).

Maqbool, S., Parkman, H. P. & Friedenberg, F. K. Wireless capsule motility: comparison of the SmartPill GI monitoring system with scintigraphy for measuring whole gut transit. Dig. Dis. Sci. 54, 2167–2174 (2009).

Timm, D. et al. The use of a wireless motility device (SmartPill(R)) for the measurement of gastrointestinal transit time after a dietary fibre intervention. Br. J. Nutr. 105, 1337–1342 (2011).

Spiller, G. A., Shipley, E. A., Chernoff, M. C. & Cooper, W. C. Bulk laxative efficacy of a psyllium seed hydrocolloid and of a mixture of cellulose and pectin. J. Clin. Pharmacol. 19, 313–320 (1979).

Bouhnik, Y. et al. Short-chain fructo-oligosaccharide administration dose-dependently increases fecal bifidobacteria in healthy humans. J. Nutr. 129, 113–116 (1999).

Vuksan, V. et al. Using cereal to increase dietary fiber intake to the recommended level and the effect of fiber on bowel function in healthy persons consuming North American diets. Am. J. Clin. Nutr. 88, 1256–1262 (2008).

Suares, N. C. & Ford, A. C. Systematic review: the effects of fibre in the management of chronic idiopathic constipation. Aliment. Pharmacol. Ther. 33, 895–901 (2011).

Christodoulides, S. et al. Systematic review with meta-analysis: effect of fibre supplementation on chronic idiopathic constipation in adults. Aliment. Pharmacol. Ther. 44, 103–116 (2016).

Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

Bliss, D. Z. et al. Dietary fiber supplementation for fecal incontinence: a randomized clinical trial. Res. Nurs. Health 37, 367–378 (2014).

Washington, N., Harris, M., Mussellwhite, A. & Spiller, R. C. Moderation of lactulose-induced diarrhea by psyllium: effects on motility and fermentation. Am. J. Clin. Nutr. 67, 317–321 (1998).

Tomlin, J. & Read, N. W. The effect of inert plastic particles on colonic function in human volunteers. Gastroenterology 94, A463–A463 (1988).

Hongisto, S. M., Paajanen, L., Saxelin, M. & Korpela, R. A combination of fibre-rich rye bread and yoghurt containing Lactobacillus GG improves bowel function in women with self-reported constipation. Eur. J. Clin. Nutr. 60, 319–324 (2006).

Holma, R., Hongisto, S. M., Saxelin, M. & Korpela, R. Constipation is relieved more by rye bread than wheat bread or laxatives without increased adverse gastrointestinal effects. J. Nutr. 140, 534–541 (2010).

de Vries, J., Birkett, A., Hulshof, T., Verbeke, K. & Gibes, K. Effects of cereal, fruit and vegetable fibers on human fecal weight and transit time: a comprehensive review of intervention trials. Nutrients 8, 130 (2016).

Gibson, G. R. et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).

So, D. et al. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. Am. J. Clin. Nutr. 107, 965–983 (2018).

Macfarlane, G. T., Steed, H. & Macfarlane, S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microbiol. 104, 305–344 (2008).

Ramirez-Farias, C. et al. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br. J. Nutr. 101, 541–550 (2009).

Sonnenburg, E. D. et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell 141, 1241–1252 (2010).

Wilson, B. & Whelan, K. Prebiotic inulin-type fructans and galacto-oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders. J. Gastroenterol. Hepatol. 32, 64–68 (2017).

Gibson, G. R., Beatty, E. R., Wang, X. & Cummings, J. H. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology. 108, 975–982 (1995).

Davis, L. M., Martinez, I., Walter, J. & Hutkins, R. A dose dependent impact of prebiotic galactooligosaccharides on the intestinal microbiota of healthy adults. Int. J. Food Microbiol. 144, 285–292 (2010).

Tap, J. et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Env. Microbiol. 17, 4954–4964 (2015).

de Preter, V. et al. Baseline microbiota activity and initial bifidobacteria counts influence responses to prebiotic dosing in healthy subjects. Aliment. Pharmacol. Ther. 27, 504–513 (2008).

Kolida, S., Meyer, D. & Gibson, G. R. A double-blind placebo-controlled study to establish the bifidogenic dose of inulin in healthy humans. Eur. J. Clin. Nutr. 61, 1189–1195 (2007).

Bouhnik, Y. et al. Prolonged administration of low-dose inulin stimulates the growth of bifidobacteria in humans. Nutr. Res. 27, 187–193 (2007).

Bouhnik, Y. et al. Four-week short chain fructo-oligosaccharides ingestion leads to increasing fecal bifidobacteria and cholesterol excretion in healthy elderly volunteers. Nutr. J. 6, 42–42 (2007).

Healey, G. et al. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. Br. J. Nutr. 119, 176–189 (2018).

Lacy, B. E. et al. Bowel disorders. Gastroenterology 150, 1393–1407.e5 (2016).

Palsson, O. S. et al. Rome IV diagnostic questionnaires and tables for investigators and clinicians. Gastroenterology 150, 1481–1491 (2016).

Quigley, E. M. M. et al. Irritable bowel syndrome: a global perspective. World Gastroenterology Organisation Global Guidelines https://www.worldgastroenterology.org/guidelines/global-guidelines/irritable-bowel-syndrome-ibs/irritable-bowel-syndrome-ibs-english (2015).

Rao, S. S., Yu, S. & Fedewa, A. Systematic review: dietary fibre and FODMAP-restricted diet in the management of constipation and irritable bowel syndrome. Aliment. Pharmacol. Ther. 41, 1256–1270 (2015).

Nagarajan, N. et al. The role of fiber supplementation in the treatment of irritable bowel syndrome: a systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 27, 1002–1010 (2015).

Ford, A. C. et al. Effect of fibre, antispasmodics, and peppermint oil in the treatment of irritable bowel syndrome: systematic review and meta-analysis. BMJ 337, a2313 (2008).

Moayyedi, P. et al. The effect of fiber supplementation on irritable bowel syndrome: a systematic review and meta-analysis. Am. J. Gastroenterol. 109, 1367–1374 (2014).

Major, G. et al. Colon hypersensitivity to distension, rather than excessive gas production, produces carbohydrate-related symptoms in individuals with irritable bowel syndrome. Gastroenterology 152, 124–133.e2 (2017).

Hunter, J. O., Tuffnell, Q. & Lee, A. J. Controlled trial of oligofructose in the management of irritable bowel syndrome. J. Nutr. 129, 1451S–1453S (1999).

Olesen, M. & Gudmand-Hoyer, E. Efficacy, safety, and tolerability of fructooligosaccharides in the treatment of irritable bowel syndrome. Am. J. Clin. Nutr. 72, 1570–1575 (2000).

Paineau, D. et al. The effects of regular consumption of short-chain fructo-oligosaccharides on digestive comfort of subjects with minor functional bowel disorders. Br. J. Nutr. 99, 311–318 (2008).

Silk, D. B., Davis, A., Vulevic, J., Tzortzis, G. & Gibson, G. R. Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment. Pharmacol. Ther. 29, 508–518 (2009).

Wilson, B., Rossi, M., Dimidi, E. & Whelan, K. Prebiotics in irritable bowel syndrome and other functional bowel disorders in adults: a systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 109, 1098–1111 (2019).

Ford, A. C. et al. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am. J. Gastroenterol. 109, 1547–1561 (2014).

Hotchkiss, A. T., Olano-Martin, E., Grace, W. E., Gibson, G. R. & Rastall, R. A. Pectic oligosaccharides as prebiotics. Oligosacch. Food Agric. 849, 54–62 (2003).

Russo, L. et al. Partially hydrolyzed guar gum in the treatment of irritable bowel syndrome with constipation: effects of gender, age, and body mass index. Saudi J. Gastroenterol. 21, 104–110 (2015).

Abraham, C. & Medzhitov, R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology 140, 1729–1737 (2011).

Cao, Y., Shen, J. & Ran, Z. H. Association between Faecalibacterium prausnitzii reduction and inflammatory bowel disease: a meta-analysis and systematic review of the literature. Gastroenterol. Res. Pract. 2014, 872725 (2014).

Ng, S. C. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390, 2769–2778 (2018).

Wedlake, L., Slack, N., Andreyev, H. J. & Whelan, K. Fiber in the treatment and maintenance of inflammatory bowel disease: a systematic review of randomized controlled trials. Inflamm. Bowel Dis. 20, 576–586 (2014).

Cavaglieri, C. R. et al. Differential effects of short-chain fatty acids on proliferation and production of pro- and anti-inflammatory cytokines by cultured lymphocytes. Life Sci. 73, 1683–1690 (2003).

Asarat, M., Apostolopoulos, V., Vasiljevic, T. & Donkor, O. Short-chain fatty acids regulate cytokines and Th17/Treg cells in human peripheral blood mononuclear cells in vitro. Immunol. Invest. 45, 205–222 (2016).

Lindsay, J. O. et al. Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn’s disease. Gut 55, 348–355 (2006).

De Preter, V. et al. Metabolic profiling of the impact of oligofructose-enriched inulin in Crohn’s disease patients: a double-blinded randomized controlled trial. Clin. Transl. Gastroenterol. 4, e30 (2013).

James, S. L. et al. Abnormal fibre usage in UC in remission. Gut 64, 562–570 (2015).

Treem, W. R., Ahsan, N., Shoup, M. & Hyams, J. S. Fecal short-chain fatty acids in children with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 18, 159–164 (1994).

Takaishi, H. et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int. J. Med. Microbiol. 298, 463–472 (2008).

Ananthakrishnan, A. N. et al. A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis. Gastroenterology 145, 970–977 (2013).

Li, F., Liu, X., Wang, W. & Zhang, D. Consumption of vegetables and fruit and the risk of inflammatory bowel disease: a meta-analysis. Eur. J. Gastroenterol. Hepatol. 27, 623–630 (2015).

Andersen, V. et al. Fibre intake and the development of inflammatory bowel disease: a European prospective multi-centre cohort study (EPIC-IBD). J. Crohns Colitis 12, 129–136 (2018).

Brotherton, C. S., Martin, C. A., Long, M. D., Kappelman, M. D. & Sandler, R. S. Avoidance of fiber is associated with greater risk of Crohn’s disease flare in a 6-month period. Clin. Gastroenterol. Hepatol. 14, 1130–1136 (2016).

Thaha, M. A. & Carrington, E. Diverticular disease. BMJ Best Practice https://bestpractice.bmj.com/topics/en-gb/16 (2019).

Rezapour, M., Ali, S. & Stollman, N. Diverticular disease: an update on pathogenesis and management. Gut Liver 12, 125–132 (2018).

Lanas, A., Abad-Baroja, D. & Lanas-Gimeno, A. Progress and challenges in the management of diverticular disease: which treatment? Therap. Adv. Gastroenterol. 11, 1756284818789055 (2018).

Onur, M. R., Akpinar, E., Karaosmanoglu, A. D., Isayev, C. & Karcaaltincaba, M. Diverticulitis: a comprehensive review with usual and unusual complications. Insights Imaging 8, 19–27 (2017).

Strate, L. L. et al. Western dietary pattern increases, and prudent dietary pattern decreases, risk of incident diverticulitis in a prospective cohort study. Gastroenterology. 152, 1023–1030.e2 (2017).

Crowe, F. L. et al. Source of dietary fibre and diverticular disease incidence: a prospective study of UK women. Gut 63, 1450–1456 (2014).

Peery, A. F. et al. A high-fiber diet does not protect against asymptomatic diverticulosis. Gastroenterology 142, 266–272.e1 (2012).

Aune, D., Sen, A., Norat, T. & Riboli, E. Dietary fibre intake and the risk of diverticular disease: a systematic review and meta-analysis of prospective studies. Eur. J. Nutr. 59, 421–432 (2020).

Wick, J. Y. Diverticular disease: eat your fiber! Consult. Pharm. 27, 613–618 (2012).

Dahl, C. et al. Evidence for dietary fibre modification in the recovery and prevention of reoccurrence of acute, uncomplicated diverticulitis: a systematic literature review. Nutrients. 10, 137 (2018).

Unlu, C., Daniels, L., Vrouenraets, B. C. & Boermeester, M. A. A systematic review of high-fibre dietary therapy in diverticular disease. Int. J. Colorectal Dis. 27, 419–427 (2012).

Brodribb, A. J. Treatment of symptomatic diverticular disease with a high-fibre diet. Lancet 1, 664–666 (1977).

Ornstein, M. H. et al. Are fibre supplements really necessary in diverticular disease of the colon? A controlled clinical trial. Br. Med. J. 282, 1353–1356 (1981).

Hodgson, W. J. The placebo effect. Is it important in diverticular disease? Am. J. Gastroenterol. 67, 157–162 (1977).

Eberhardt, F. et al. Role of dietary fibre in older adults with asymptomatic (AS) or symptomatic uncomplicated diverticular disease (SUDD): systematic review and meta-analysis. Maturitas 130, 57–67 (2019).

Dukas, L., Willett, W. C. & Giovannucci, E. L. Association between physical activity, fiber intake, and other lifestyle variables and constipation in a study of women. Am. J. Gastroenterol. 98, 1790–1796 (2003).

Dimidi, E., Cox, C., Grant, R., Scott, S. M. & Whelan, K. Perceptions of constipation among the general public and people with constipation differ strikingly from those of general and specialist doctors and the Rome IV criteria. Am. J. Gastroenterol. 114, 1116–1129 (2019).

Sanjoaquin, M. A., Appleby, P. N., Spencer, E. A. & Key, T. J. Nutrition and lifestyle in relation to bowel movement frequency: a cross-sectional study of 20630 men and women in EPIC-Oxford. Public Health Nutr. 7, 77–83 (2004).

Alrefaai, L., Cade, J. E. & Burley, V. J. Dietary fibre intake and constipation in the UK Women’s Cohort Study. Proc. Nutr. Soc. 72, E287–E287 (2013).

Lewis, S. J. & Heaton, K. W. Roughage revisited: the effect on intestinal function of inert plastic particles of different sizes and shape. Dig. Dis. Sci. 44, 744–748 (1999).

Wrick, K. L. et al. The influence of dietary fiber source on human intestinal transit and stool output. J. Nutr. 113, 1464–1479 (1983).

McRorie, J. W. Jr. & McKeown, N. M. Understanding the physics of functional fibers in the gastrointestinal tract: an evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. J. Acad. Nutr. Diet. 117, 251–264 (2017).

O’Keefe, S. J. The association between dietary fibre deficiency and high-income lifestyle-associated diseases: Burkitt’s hypothesis revisited. Lancet Gastroenterol. Hepatol. 4, 984–996 (2019).

Muir, J. G. et al. Combining wheat bran with resistant starch has more beneficial effects on fecal indexes than does wheat bran alone. Am. J. Clin. Nutr. 79, 1020–1028 (2004).

Govers, M. J., Gannon, N. J., Dunshea, F. R., Gibson, P. R. & Muir, J. G. Wheat bran affects the site of fermentation of resistant starch and luminal indexes related to colon cancer risk: a study in pigs. Gut 45, 840–847 (1999).

Tuncil, Y. E. et al. Delayed utilization of some fast-fermenting soluble dietary fibers by human gut microbiota when presented in a mixture. J. Funct. Foods 32, 347–357 (2017).

Harmayani, E. et al. Healthy food traditions of Asia: exploratory case studies from Indonesia, Thailand, Malaysia, and Nepal. J. Ethnic Foods 6, 1 (2019).

McRorie, J. W. Jr. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 2: what to look for and how to recommend an effective fiber therapy. Nutr. Today 50, 90–97 (2015).

Zielinski, G., DeVries, J. W., Craig, S. A. & Bridges, A. R. Dietary fiber methods in Codex Alimentarius: current status and ongoing discussions. Cereal Food World 58, 148–152 (2013).

Food and Agriculture Organization/World Health Organization Codex Alimentarius Commission. Codex Alimentarius: Guidelines on Nutrition Labelling CAC/GL 2-1985. (FAO, 2010).