Dietary choline and betaine intakes and risk of total and lethal prostate cancer in the Atherosclerosis Risk in Communities (ARIC) Study

Cancer Causes & Control - Tập 30 - Trang 343-354 - 2019
Peijin Han1, Aurelian Bidulescu2, John R. Barber1, Steven H. Zeisel3, Corinne E. Joshu1,4, Anna E. Prizment5, Mara Z. Vitolins6, Elizabeth A. Platz1,4,7,8
1Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA;
2Department of Epidemiology and Biostatistics, Indiana University Bloomington School of Public Health, Bloomington, USA
3Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA
4Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, USA
5Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, USA
6Epidemiology & Prevention Office of Women in Medicine and Science Center on Diabetes, Obesity, and Metabolism, Wake Forest School of Medicine, Winston-Salem, USA
7Department of Urology and the James Buchanan Brady Urologic Institute, Johns Hopkins University School of Medicine, Baltimore, USA
8Baltimore, USA

Tóm tắt

Two prior cohort studies suggested that choline, but not betaine intake, is associated with an increased risk of advanced prostate cancer (PCa). Given that evidence remains limited, we evaluated whether intakes of choline and derivative betaine are associated with total and lethal PCa risk and PCa death in men with PCa. We included 6,528 men (24.4% African American) without a cancer diagnosis at baseline (1987–1989) followed through 2012. Dietary intake was assessed using a food frequency questionnaire coupled with a nutrient database. We used Cox proportional hazards regression to estimate hazards ratios (HRs) and 95% confidence intervals (CIs) of total and lethal PCa risk overall and by race. Choline intake was not associated with total (n = 811) or lethal (n = 95) PCa risk overall or by race. Betaine intake was inversely associated with lethal (tertile 3 vs 1, HR 0.59, 95% CI 0.35–1.00, p trend = 0.04), but not total PCa risk; patterns for lethal PCa were similar by race. Neither nutrient was associated with PCa death in men with PCa. Choline intake was not associated with total or lethal PCa or with PCa death in men with PCa. Betaine intake was inversely associated with lethal, but not total PCa risk or with PCa death in men with PCa. Our results do not support the hypothesis that higher choline intake increases lethal PCa risk, but do suggest that higher betaine intake may be associated with lower lethal PCa risk. Further investigation with a larger number of lethal cases is needed.

Tài liệu tham khảo

Newberne PM, Rogers AE (1986) Labile methyl groups and the promotion of cancer. Annu Rev Nutr 6(1):407–432. https://doi.org/10.1146/annurev.nu.06.070186.002203 Balassiano K, Lima S, Jenab M, Overvad K, Tjonneland A, Boutron-Ruault MC, Clavel-Chapelon F, Canzian F, Kaaks R, Boeing H, Meidtner K, Trichopoulou A, Laglou P, Vineis P, Panico S, Palli D, Grioni S, Tumino R, Lund E, Bueno-de-Mesquita HB, Numans ME, Peeters PHM, Ramon Quirós J, Sánchez Ma-J, Navarro C, Ardanaz E, Dorronsoro M, Hallmans G, Stenling R, Ehrnström R, Regner S, Allen NE, Travis RC, Khaw K-T, Offerhaus GJA, Sala N, Riboli E, Hainaut P, Scoazec J-Y, Sylla BS, Gonzalez CA, Herceg Z (2011) Aberrant DNA methylation of cancer-associated genes in gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC–EURGAST). Cancer Lett 311(1):85–95. https://doi.org/10.1016/j.canlet.2011.06.038 Johansson M, Van Guelpen B, Vollset SE, Hultdin J, Bergh A, Key T, Midttun O, Hallmans G, Ueland PM, Stattin P (2009) One-carbon metabolism and prostate cancer risk: prospective investigation of seven circulating B vitamins and metabolites. Cancer Epidemiol Biomark Prev 18(5):1538–1543. https://doi.org/10.1158/1055-9965.EPI-08-1193 Keshari KR, Tsachres H, Iman R, Delos Santos L, Tabatabai ZL, Shinohara K, Vigneron DB, Kurhanewicz J (2011) Correlation of phospholipid metabolites with prostate cancer pathologic grade, proliferative status and surgical stage-impact of tissue environment. NMR Biomed 24(6):691–699. https://doi.org/10.1002/nbm.1738 Müller SA, Holzapfel K, Seidl C, Treiber U, Krause BJ, Senekowitsch-Schmidtke R (2009) Characterization of choline uptake in prostate cancer cells following bicalutamide and docetaxel treatment. Eur J Nucl Med Mol Imaging 36(9):1434–1442. https://doi.org/10.1007/s00259-009-1117-x Lee J, Sato MM, Coel MN, Lee K-H, Kwee SA (2016) Prediction of PSA progression in castration-resistant prostate cancer based on treatment-associated change in tumor burden quantified by 18F-fluorocholine PET/CT. J Nucl Med 57(7):1058–1064. https://doi.org/10.2967/jnumed.115.169177 Li R, Ravizzini GC, Gorin MA, Maurer T, Eiber M, Cooperberg MR, Alemozzaffar M, Tollefson MK, Delacroix SE, Chapin BF (2018) The use of PET/CT in prostate cancer. Prostate Cancer Prostatic Dis 21(1):4–21. https://doi.org/10.1038/s41391-017-0007-8 Richman EL, Kenfield SA, Stampfer MJ, Giovannucci EL, Zeisel SH, Willett WC, Chan JM (2012) Choline intake and risk of lethal prostate cancer: incidence and survival. Am J Clin Nutr 96(4):855–863. https://doi.org/10.3945/ajcn.112.039784 ARIC Investigators (1989) The Atherosclerosis Risk in Communities (ARIC) study: design and objectives. Am J Epidemiol 129(4):687–702. https://doi.org/10.1093/oxfordjournals.aje.a115184 Bidulescu A, Chambless LE, Siega-Riz A, Zeisel SH, Heiss G (2007) Usual choline and betaine dietary intake and incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study. BMC Cardiovasc Disord 7(1):1–8. https://doi.org/10.1186/1471-2261-7-20 Meyer A-M, Evenson KR, Couper DJ, Stevens J, Pereria MA, Heiss G (2008) Television, physical activity, diet, and body weight status: the ARIC cohort. Int J Behav Nutr Phys Act 5(1):68. https://doi.org/10.1186/1479-5868-5-68 Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE (1985) Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122(1):51–65. https://doi.org/10.1093/oxfordjournals.aje.a114086 (dataset) Patterson KY, Bhagwat SA, Williams JR, Howe JC, Holden JM, Zeisel SH, Dacosta KA, Mar M-H (2015) USDA database for the choline content of common foods, release 2 (2008). Nutrient Data Laboratory. Beltsville Human Nutrition Research Center, ARS. https://doi.org/10.15482/USDA.ADC/1178141 Bidulescu A, Chambless LE, Siega-Riz A, Zeisel SH, Heiss G (2009) Repeatability and measurement error in the assessment of choline and betaine dietary intake: the Atherosclerosis Risk in Communities (ARIC) study. Nutr J 8(1):1–6. https://doi.org/10.1186/1475-2891-8-14 Joshu CE, Barber JR, Coresh J, Couper DJ, Mosley TH, Vitolins MZ, Butler KR, Nelson HH, Prizment AE, Selvin E, Tooze JA, Visvanathan K, Folsom AR, Platz EA (2018) Enhancing the infrastructure of the Atherosclerosis Risk in Communities (ARIC) study for cancer epidemiology research: ARIC cancer. Cancer Epidemiol Biomark Prev 27(3):295–305. https://doi.org/10.1158/1055-9965.epi-17-0696 Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65(4):1220S–1228S. https://doi.org/10.1093/ajcn/65.4.1220S Laird PW, Jaenisch R (1994) DNA methylation and cancer. Hum Mol Genet 3(suppl_1):1487–1495. https://doi.org/10.1093/hmg/3.suppl_1.1487 Institute of Medicine (1998) Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. The National Academies Press, Washington, DC. https://doi.org/10.17226/6015 Wallace TC, Fulgoni VL (2016) Assessment of total choline intakes in the United States. J Am Coll Nutr 35(2):108–112. https://doi.org/10.1080/07315724.2015.1080127 Jones PA (1986) DNA methylation and cancer. Cancer Res 46(2):461–466 Davis CD, Uthus EO (2004) DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood) 229(10):988–995. https://doi.org/10.1177/153537020422901002 Niculescu MD, Zeisel SH (2002) Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J Nutr 132(8):2333S–2335S. https://doi.org/10.1093/jn/132.8.2333S Nitter M, Norgard B, de Vogel S, Eussen SJ, Meyer K, Ulvik A, Ueland PM, Nygard O, Vollset SE, Bjorge T, Tjonneland A, Hansen L, Boutron-Ruault M, Racine A, Cottet V, Kaaks R, Kuhn T, Trichopoulou A, Bamia C, Naska A, Grioni S, Palli D, Panico S, Tumino R, Vineis P, Bueno-de-Mesquita HB, van Kranen H, Peeters PH, Weiderpass E, Dorronsoro M, Jakszyn P, Sanchez M, Arguelles M, Huerta JM, Barricarte A, Johansson M, Ljuslinder I, Khaw K, Wareham N, Freisling H, Duarte-Salles T, Stepien M, Gunter MJ, Riboli E (2014) Plasma methionine, choline, betaine, and dimethylglycine in relation to colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Ann Oncol 25(8):1609–1615. https://doi.org/10.1093/annonc/mdu185 Ying J, Rahbar MH, Hallman DM, Hernandez LM, Spitz MR, Forman MR, Gorlova OY (2013) Associations between dietary intake of choline and betaine and lung cancer risk. PLoS ONE 8(2):e54561. https://doi.org/10.1371/journal.pone.0054561