Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Chế độ ăn uống, vi sinh vật đường ruột và vitamin D + A trong bệnh đa xơ cứng
Tóm tắt
Cốt lõi trong việc hiểu mối quan hệ giữa chế độ ăn uống, vi sinh vật đường ruột và vitamin D và A trong bệnh đa xơ cứng là viêm mức độ thấp, điều này liên quan đến tất cả các bệnh viêm mãn tính và bị ảnh hưởng bởi từng yếu tố trên. Chúng tôi chỉ ra rằng các thành phần thực phẩm có hiệu ứng proinflammatory hoặc anti-inflammatory và ảnh hưởng đến cả chuyển hóa của con người (được gọi là “metabolome”) và thành phần của vi sinh vật đường ruột. Các chế độ ăn uống phương Tây giàu calo và chất béo từ động vật thúc đẩy sự đồng hóa và làm thay đổi thành phần vi sinh vật đường ruột theo hướng loạn khuẩn. Viêm ruột sau đó dẫn đến sự rò rỉ của hàng rào ruột, sự phá vỡ hàng rào máu-não và viêm thần kinh. Ngược lại, chế độ ăn chay, giàu chất xơ, tương thích với eubiosis đường ruột và tình trạng sức khỏe tốt. Mức vitamin D, chủ yếu là thiếu hụt trong tình trạng viêm mức độ thấp kéo dài, chỉ có thể được phục hồi về giá trị tối ưu thông qua việc cung cấp lượng lớn cholecalciferol. Ở các giá trị tối ưu (>30 ng/ml), vitamin D cần vitamin A để liên kết với thụ thể vitamin D và phát huy tác dụng chống viêm. Cả hai vitamin cần phải được cung cấp cho những người thiếu vitamin D. Chúng tôi kết luận rằng các chất dinh dưỡng, bao gồm cả chất xơ thực phẩm không tiêu hóa, đóng vai trò quan trọng trong việc xử lý viêm mức độ thấp liên quan đến các bệnh viêm mãn tính. Hành động của chúng được trung gian bởi vi sinh vật đường ruột và bất kỳ sự thay đổi vi sinh nào do chế độ ăn gây ra đều làm thay đổi tương tác giữa chủ thể và vi sinh vật theo một cách nhất quán, làm cải thiện hoặc làm trầm trọng thêm tình trạng bệnh.
Từ khóa
#chế độ ăn uống #vi sinh vật đường ruột #vitamin D #vitamin A #bệnh đa xơ cứng #viêm mãn tínhTài liệu tham khảo
Compston A, Coles A. Multiple sclerosis. Lancet 2008; 372:1502-1517.
Yong HY, Yong VW. Stop inflammation and you stop neurodegeneration in MS – YES. Mult Scler 2017; 23:1320-1321.
Amato MP, Derfuss T, Hemmer B, et al. 2016 ECTRIMS Focused Workshop Group. Environmental modifiable risk factors for multiple sclerosis: report from the 2016 ECTRIMS focused workshop. Mult Scler 2017; 6:1352458516686847.
Munger KL, Fitzgerald KC, Freedman MS, et al. No association of multiple sclerosis activity and progression with EBV or tobacco use in BENEFIT. Neurology 2015;85:1694-1701.
Napier MD, Poole C, Satten GA, Ashley-Koch A, Marrie RA, Williamson DM. Heavy metals, organic solvents, and multiple sclerosis: An exploratory look at gene-environment interactions. Arch Environ Occup Health 2016; 71:26-34.
Munger KL. Childhood obesity is a risk factor for multiple sclerosis. Mult Scler 2013;19:1800.
Liu Z, Zhang TT, Yu J, et al. Excess body weight during childhood and adolescence is associated with the risk of multiple sclerosis: a meta-analysis. Neuroepidemiology 2016; 47:103-108.
Ascherio A, Munger KL, White R, et al. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol 2014; 71:306-314.
Pierrot-Deseilligny C, Souberbielle JC. Vitamin D and multiple sclerosis: an update. Mult Scler Relat Disord 2017; 14:35-45.
Riccio P, Rossano R, Liuzzi GM. May diet and dietary supplements improve the wellness of multiple sclerosis patients? A molecular approach. Autoimm Dis 2011; 2010:249842.
Riccio P. The molecular basis of nutritional intervention in multiple sclerosis: a narrative review. Complement Ther Med 2011; 19:228-237.
Riccio P, Rossano R. The role of nutrition in multiple sclerosis: a story yet to be written. Rev Esp Esclerosis Multiple 2013; 5:24-37.
Riccio P, Rossano R. Nutrition facts in multiple sclerosis. ASN Neuro 2015; 7:1759091414568185.
Holick MF. The vitamin D deficiency pandemic: approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord 2017; 18:153-165.
Herieka M, Erridge C. High-fat meal induced postprandial inflammation. Mol Nutr Food Res 2014; 58:136-146.
Hedström AK, Olsson T, Alfredsson L. High body mass index before age 20 is associated with increased risk for multiple sclerosis in both men and women. Mult Scler 2012; 18:1334-1336.
Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun 2014; 38:1-12.
Rea K, Dinan TG, Cryan JF. The microbiome: a key regulator of stress and neuroinflammation. Neurobiol Stress 2016; 4:23-33.
Fleck AK, Schuppan D, Wiendl H, Klotz L. Gut-CNS-axis as possibility to modulate inflammatory disease activity-implications for multiple sclerosis. Int J Mol Sci 2017; 18: E1526.
Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 2016; 165:1332-1345.
Tilg H, Moschen AR, Kaser A. Obesity and the microbiota. Gastroenterology 2009; 13:1476-1483.
De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010; 107:14691-14696.
Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med 2016; 8:51.
Bäckhed F, Fraser CM, Ringel Y, et al. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe 2012; 12:611-622.
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505:559-563.
Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500:541-546.
Gorvitovskaia A, Holmes SP, Huse SM. Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome 2016; 4:15.
Pols TWH, Puchner T, Korkmaz HI, Vos M, Soeters MR, de Vries CJM. Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the Vitamin D receptor. PLOS ONE 2017; 12:e0176715.
Velasquez-Manoff M. Gut microbiome: the peacekeepers. Nature 2015; 518:S3-S11.
David LA, Materna AC, Friedman J, et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol 2014; 15:R89.
Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 2017; 19:29-41.
Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Front Microbiol 2016; 7:979.
Thorburn AN, Macia L, Mackay CR. Diet, metabolites, and "western-lifestyle" inflammatory diseases. Immunity 2014; 40:833-842.
Telesford KM, Yan W, Ochoa-Reparaz J, et al. A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39(+)Foxp3(+) T cells and Treg function. Gut Microbes 2015; 6:234-242.
Quévrain E, Maubert MA, Michon C, et al. Identification of an anti-inflammatory protein from Faecali bacterium prausnitzii, a commensal bacterium deficient in Crohn's disease. Gut 2016; 65:415-425.
Moos WH, Faller DV, Harpp DN, et al. Microbiota and neurological disorders: a gut feeling. Biores Open Access 2016; 5:137-145.
Rothhammer V, Mascanfroni ID, Bunse L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 2016; 22:586-597.
Lutgendorff F, Akkermans LM, Söderholm JD. The role of microbiota and probiotics in stress-induced gastro-intestinal damage. Curr Mol Med 2008; 8:282-298.
Shen T, Chen X, Li Y, et al. Interleukin-17A exacerbates high-fat diet-induced hepatic steatosis by inhibiting fatty acid β-oxidation. Biochim Biophys Acta 2017; 1863:1510-1518.
Park JH, Jeong SY, Choi AJ, Kim SJ. Lipopolysaccharide directly stimulates Th17 differentiation in vitro modulating phosphorylation of RelB and NF-κB1. Immunol Lett 2015; 165:10-19.
Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 2012; 142:1100-1101.
Ochoa-Repáraz J, Kasper LH. The Second Brain: Is the Gut Microbiota a Link Between Obesity and Central Nervous System Disorders? Curr Obes Rep. 2016; 5(1):51-64.
Scheperjans F. Can microbiota research change our understanding of neurodegenerative diseases? Neurodegener Dis Manag 2016; 6:81-85.
Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 2011; 479:538-541.
Miyake S, Kim S, Suda W, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to Clostridia XIVa and IV Clusters. PLOS ONE 2015; 10:e0137429.
Chen J, Chia N, Kalari KR, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep 2016; 6:28484.
Mirza A, Mao-Draayer Y. The gut microbiome and microbial translocation in multiple sclerosis. Clin Immunol 2017.
Scheperjans F, Aho V, Pereira PA, et al. Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov Disord 2015; 30:350-358.
Bu XL, Yao XQ, Jiao SS, et al. A study on the association between infectious burden and Alzheimer's disease. Eur J Neurol 2015; 22:1519-1525.
Bu XL, Wang X, Xiang Y, et al. The association between infectious burden and Parkinson's disease: a case-control study. Parkinsonism Relat Disord 2015; 21:877-881.
Buscarinu MC, Cerasoli B, Annibali V, et al. Altered intestinal permeability in patients with relapsing-remitting multiple sclerosis: a pilot study. Mult Scler 2017; 23:442-446.
Wekerle H. Brain autoimmunity and intestinal microbiota. 100 Trillion game changers. Trends Immunol 2017; 1379:1-15.
Swank RL. Multiple sclerosis; a correlation of its incidence with dietary fat. Am J Med Sci 1950; 220:421-430.
Swank RL, Goodwin JW. Review of MS patient survival on a Swank low saturated fat diet. Nutrition 2003; 19:161-165.
Rietschel ET, Brade H, Holst O, et al. Bacterial endotoxin: chemical constitution, biological recognition, host response, and immunological detoxification. Curr Top Microbiol Immunol 1996; 216:39-81.
Hwang DH, Kim JA, Lee JY. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid. Eur J Pharmacol 2016; 785:24-35.
Fritsche KL. The science of fatty acids and inflammation. Adv Nutr 2015; 6:293S-301S.
Kleinewietfeld M, Manzel A, Titze J, et al. Sodium chloride drives autoimmune disease by the induction of pathogenicTh17 Cells. Nature 2013; 496:518-522.
Riccio P. The proteins of the milk fat globule membrane in the balance. Trends Food Sci Technol 2004; 15:458-461.
Choi IY, Lee P, Adany P, et al. In vivo evidence of oxidative stress in brains of patients with progressive multiple sclerosis. Mult Scler 2017.
Frischer JM, Stephan Bramow S, Dal-Bianco A, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 2009; 132: 1175-1189.
Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients 2010; 2:355-374.
Schmitz G, Ecker J. The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res 2008; 47:147-155.
Fragoso YD, Stoney PN, McCaffery PJ. The evidence for a beneficial role of vitamin A in multiple sclerosis. CNS Drugs 2014; 28:291-299.
Huang JK, Jarjour AA, Oumesmar BN, et al. Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci 2011; 14:45-53.
Qing J. Natural forms of vitamin E: metabolism, antioxidant and anti-inflammatory activities and the role in disease prevention and therapy. Free Radic Biol Med 2014; 72: 76-90.
Mastronardi FG, Min W, Wang H, et al. Attenuation of experimental autoimmune encephalomyelitis and non immune demyelination by IFN-beta plus vitamin B12: treatment to modify notch-1/sonic hedgehog balance. J Immunol 2004; 172:6418-6426.
Penberthy WT, Tsunoda I. The importance of NAD in multiple sclerosis. Curr Pharm Des 2009; 15:64-99.
Fenni S, Hammou H, Astier J, et al. Lycopene and tomato powder supplementation similarly inhibit high-fat diet induced obesity, inflammatory response, and associated metabolic disorders. Mol Nutr Food Res 2017; 61(9).
Boosalis MG. The role of selenium in chronic disease. Nutr Clin Pract 2008; 23:152-160.
Bredholt M, Frederiksen JL. Zinc in multiple sclerosis: a systematic review and meta-analysis. ASN Neuro 2016; 8:1759091416651511.
Galland G. Diet and inflammation. Nutr Clin Pract 2010; 25:634-640.
Riccio P, Giovannelli S, Bobba A, et al. Specificity of zinc binding to myelin basic protein. Neurochem Res 1995; 20:1107-1113.
Salinthone S, Yadav V, Schillace RV, Bourdette DN, Carr DW. Lipoic acid attenuates inflammation via cAMP and protein kinase A signaling. PLOS ONE 2010; 5:e13058.
Takechi R, Pallebage-Gamarallage MM, Lam V, Giles C, Mamo JC. Nutraceutical agents with anti-inflammatory properties prevent dietary saturated-fat induced disturbances in blood-brain barrier function in wild-type mice. J Neuroinflammation 2013; 10:73.
Bavarsad Shahripour R, Harrigan MR, Alexandrov AV. N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain Behav 2014; 4:108-122.
Visioli F, De La Lastra CA, Andres-Lacueva C, et al. Polyphenols and human health: a prospectus. Crit Rev Food Sci Nutr 2011; 51:524-546.
Gupta C, Prakash D. Phytonutrients as therapeutic agents. J Complement Integr Med 2014; 11:151-169.
Vijayakumar TM, Kumar RM, Agrawal A, Dubey GP, Ilango K. Comparative inhibitory potential of selected dietary bioactive polyphenols, phytosterols on CYP3A4 and CYP2D6 with fluorometric high-throughput screening. J Food Sci Technol 2015; 52:4537-4543.
Liuzzi GM, Latronico T, Branà MT, et al. Structure-dependent inhibition of gelatinases by dietary antioxidants in rat astrocytes and sera of multiple sclerosis patients. Neurochem Res 2011; 36:518-527.
Amara F, Berbenni M, Fragni M, et al. Neuroprotection by cocktails of dietary antioxidants under conditions of nerve growth factor deprivation. Oxid Med Cell Longev 2015; 2015:217258.
Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci 2017.
Chassaing B, Koren O, Goodrich JK, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015; 519:92-96.
Roca-Saavedra P, Mendez-Vilabrille V, Miranda JM, et al. Food additives, contaminants and other minor components: effects on human gut microbiota—a review. J Physiol Biochem 2017.
Welzl H, D’Adamo P, Lipp HP. Conditioned taste aversion as a learning and memory paradigm. Behav Brain Res 2001; 125:205-213.
Weiland TJ, Hadgkiss EJ, Jelinek GA, et al. The association of alcohol consumption and smoking with quality of life, disability and disease activity in an international sample of people with multiple sclerosis. J Neurol Sci 2014; 336:211-219.
Allais L, Kerckhof FM, Verschuere S, et al. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ Microbiol 2016; 18:1352-1363.
Hedström AK, Hillert J, Olsson T, Alfredsson L. Alcohol as a modifiable lifestyle factor affecting multiple sclerosis risk. JAMA Neurol 2014; 71:300-305.
Samuelson DR, Shellito JE, Maffei VJ, et al. Alcohol-associated intestinal dysbiosis impairs pulmonary host defense against Klebsiella pneumoniae. PLOS Pathog 2017; 13:e1006426.
Piccio L, Stark JL, Cross AH. Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. J Leukocyte Biol 2008; 84:940-948.
Choi IY, Piccio L, Childress P, et al. A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms. Cell Rep 2016; 15:2136-2146.
Clauw DJ. Guided graded exercise self-help as a treatment of fatigue in chronic fatigue syndrome. Lancet 2017; 390:335-336.
Gacias M, Casaccia P. Promoting return of function in multiple sclerosis: an integrated approach. Mult Scler Relat Disord 2013; 2(4).
Mokhtarzade M, Ranjbar R, Majdinasab N, Patel D, Molanouri Shamsi M. Effect of aerobic interval training on serum IL-10, TNFα, and adipokines levels in women with multiple sclerosis: possible relations with fatigue and quality of life. Endocrine 2017; 57:262-271.
Lunde LK, Skare Ø, Aass HC, et al. Physical activity initiated by employer induces improvements in a novel set of biomarkers of inflammation: an 8-week follow-up study. Eur J Appl Physiol 2017; 117:521-532.
Petriz BA, Castro AP, Almeida JA, et al. Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics. 2014;15:511.
Monda V, Villano I, Messina A, et al. Exercise modifies the gut microbiota with positive health effects. Oxid Med Cell Longev 2017; 2017:3831972.
Farinotti M, Vacchi L, Simi S, Di Pietrantonj C, Brait L, Filippini G. Dietary interventions for multiple sclerosis. Cochrane Database Syst Rev 2012; 12:CD004192.
Kousmine C. Inflammation, allergie et cancer. Int Arch Allergy Appl Immunol 1956; 8:207-217.
Swank RL. Multiple sclerosis: twenty years on low fat diet. Arch Neurol 1970; 23:460-474.
Bisht B, Darling WG, Grossmann RE, et al. A multimodal intervention for patients with secondary progressive multiple sclerosis: feasibility and effect on fatigue. J Altern Complement Med 2014; 20:347-355.
Ostan R, Lanzarini C, Pini E, et al. Inflammaging and cancer: a challenge for the Mediterranean diet. Nutrients 2015; 7:2589-2621.
McDougall J, Thomas LE, McDougall C, et al. Effects of 7 days on an ad libitum low-fat vegan diet: the McDougall Program cohort. Nutr J 2014; 13:99.
El-Chammas K, Danner E. Gluten-free diet in nonceliac disease. Nutr Clin Pract 2011; 26:294-299.
Riccio P, Rossano R, Larocca M, et al. Anti-inflammatory nutritional intervention in patients with relapsing-remitting and primary-progressive multiple sclerosis: a pilot study. Exp Biol Med (Maywood) 2016; 24:620-635.
Rossano R, Larocca M, Riviello L, et al. Heterogeneity of serum gelatinases MMP-2 and MMP-9 isoforms and charge variants. J Cell Mol Med 2014; 18:242-252.
Ascherio A, Munger KL. Epidemiology of multiple sclerosis: from risk factors to prevention—an update. Semin Neurol 2016; 36:103-114.
Charalambidou E., Pantzaris M., Patrikios I. Multiple sclerosis in Cyprus: a fourteen year (2000–2014) epidemiological study. Am J Epidemiol Infect Dis 2016; 4:1-9.
Massacesi L, Abbamondi AL, Giorgi C, Sarlo F, Lolli F, Amaducci L. Suppression of experimental allergic encephalomyelitis by retinoic acid. J Neurol Sci 1987; 80:55-64.
Al-Daghri NM, Guerini FR, Al-Attas OS, et al. Vitamin D receptor gene polymorphisms are associated with obesity and inflammosome activity. PLOS ONE 2014; 9:e102141.
Polidoro L, Properzi G, Marampon F, et al. Vitamin D protects human endothelial cells from H2O2 oxidant injury through the Mek/Erk-Sirt1 axis activation. J Cardiovasc Transl Res 2013; 6:221-231.
Zhao H, Zhang H, Wu H, et al. Protective role of 1,25(OH)2 vitamin D3 in the mucosal injury and epithelial barrier disruption in DSS-induced acute colitis in mice. BMC Gastroenterol 2012; 12:57.
Jin D, Wu S, Zhang YG, et al. Lack of vitamin D receptor causes dysbiosis and changes the functions of the murine intestinal microbiome. Clin Ther 2015; 37:996-1009.
Sun J. VDR/vitamin D receptor regulates autophagic activity through ATG16L1. Autophagy 2016; 12:1057-1058.
Sun J. The Role of vitamin D and vitamin D receptors in colon cancer. Clin Transl Gastroenterol 2017; 8:e103.
Pantzaris MC, Loukaides GN, Ntzani EE, Patrikios IS. A novel oral nutraceutical formula of omega-3 and omega-6 fatty acids with vitamins (PLP10) in relapsing remitting multiple sclerosis: a randomised, double-blind, placebo-controlled proof-of-concept clinical trial. BMJ Open 2013; 3:e002170.
Gupta A, Khanna S. Fecal microbiota transplantation. JAMA 2017; 318: 102.
Callaway E. Fish live longer on ‘young poo’. Nature 2017; 544:147.
Smith P, Willemsen D, Popkes ML, et al. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. Elife 2017;6:e27014.
Bojanova DP, Bordenstein SR. Fecal transplants: what is being transferred? PLOS Biol. 2016; 14:e1002503.
Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature 2017; 548:43-51.
Sonnenburg JL, Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature 2016; 535:56-64.
Ochoa-Repáraz J, Magori K, Kasper LH. The chicken or the egg dilemma: intestinal dysbiosis in multiple sclerosis. Ann Transl Med 2017; 5:145.
Ochoa-Repáraz J, Mielcarz DW, Begum-Haque S, Kasper LH. Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann Neurol 2011; 69:240-247.
Fernández Ó, Álvarez-Cermeño JC, Arroyo-González R, et al. Review of the novelties presented at the 27th Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS). Rev Neurol 2012; 54:677-691.
Esposito S, Bonavita S, Sparaco M, Gallo A, Tedeschi G. The role of diet in multiple sclerosis: a review. Nutr Neurosci 2017; 1-14.
Altowaijri G, Fryman A, Yadav V. Dietary interventions and multiple sclerosis. Curr Neurol Neurosci Rep 2017; 17:28.
Bagur MJ, Murcia MA, Jiménez-Monreal AM, et al. Influence of diet in multiple sclerosis: a systematic review. Adv Nutr 2017; 8:463-472.
Wekerle H. The gut-brain connection: triggering of brain autoimmune disease by commensal gut bacteria. Rheumatology (Oxford) 2016; 55:68-75.
Cosorich I, Dalla-Costa G, Sorini C, et al. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Sci Adv 2017; 3:e1700492.
Dunn M, Bhargava P, Kalb R. Your patients with multiple sclerosis have set wellness as a high priority—and the national multiple sclerosis society is responding. US Neurology 2015; 11:80-86.
Motl RW, Mowry EM, Ehde DM, et al. Wellness and multiple sclerosis: the national MS society establishes a wellness research working group and research priorities. Mult Scler 2017.