Dielectric properties of nano-(MgO–Gd2O3) Co-doped alumina for high voltage insulators

Ceramics International - Tập 46 - Trang 28390-28399 - 2020
S.M. Naga1, N. El-Mehalawy1, M. Awaad1, T. Eliyan2
1National Research Centre, Refractories, Ceramics and Building Materials Dept., El-Bohous Str., 12622 Cairo, Egypt
2Faculty of Engineering, Shoubra, Benha Univ., Egypt

Tài liệu tham khảo

Erkalfa, 1995, The densification and microstructural development of Al2O3 with manganese oxide addition, J. Eur. Ceram. Soc., 15, 167, 10.1016/0955-2219(95)93062-8 Sathiyakumar, 2003, Influence of additives on density, microstructure and mechanical properties of alumina, J. Mater. Process. Technol., 133, 282, 10.1016/S0924-0136(02)00956-1 Harun, 2012, Effect of MgO additive on microstructure of Al2O3, Adv. Mater. Res., 488–489, 335, 10.4028/www.scientific.net/AMR.488-489.335 Zhilui, 2007, Effect of polymorphism of Al2O3 on sintering and grain growth of magnesia aluminate spinel, Sci. Sintering, 39, 9, 10.2298/SOS0701009Z Rahman, 2005 Demuyncka, 2012, Densification of alumina by SPS and HP: a comparative study, J. Eur. Ceram. Soc., 32, 1957, 10.1016/j.jeurceramsoc.2011.10.031 Chitrarasu, 2017, Structural evolution and electrical properties of the biphasic compound α-Al2O3:MgAl2O4, Mater. Res. Bull., 90, 244, 10.1016/j.materresbull.2017.01.053 Naga, 2014, Densification behavior and mechanical properties of niobium-oxide-doped alumina ceramics, J. Ceram. Sci. Technol., 5, 51 Naga, 2016, In-situ sintering reaction of Al2O3- LaAl11O18- ZrO2 composite, Int. J. Refract. Metals Hard Mater., 54, 230, 10.1016/j.ijrmhm.2015.07.026 Naga, 2019, Strontium hexaaluminate/ZTA composites: preparation and characterization, Mater. Chem. Phys., 232, 23, 10.1016/j.matchemphys.2019.04.055 Sakabe, 2002, Effects of rare-earth oxides on reliability of X7R dielectrics, Jpn. J. Appl. Phys., 41, 5668, 10.1143/JJAP.41.5668 Kim, 2007, Effects of Y2O3 addition on electrical conductivity and dielectric properties of Ba-excess BaTiO3, J. Eur. Ceram. Soc., 27, 1113, 10.1016/j.jeurceramsoc.2006.05.039 Na, 2003, Temperature dependence of dielectric properties of rare-earth element doped BaTiO3, J. Ceram. Process. Res., 4, 181 Ateia, 2014, Effect of rare earth oxides and La3+ ion concentration on some properties of Ni–Zn ferrites, Physica B, 445, 60, 10.1016/j.physb.2014.03.094 2018 Shen, 2014, Structural and dielectric properties of rare earth (Y, Ho) doped, Ba0.95Ca0.05Ti0.85Zr0.15O3 Ceramics, 728 Shichimiya, 1998, Development of advanced arresters for GIS with new zinc-oxide elements, IEEE Trans. Power Deliv., 13, 465, 10.1109/61.660916 Makovec, 2004, Solid solubility of holmium, ytrium and dysprosium in BaTiO3, J. Am. Ceram. Soc., 87, 1324, 10.1111/j.1151-2916.2004.tb07729.x Mitic, 2010, Influence of rare-earth dopants on barium titanate ceramics microstructure and corresponding electrical properties, J. Am. Ceram. Soc., 93, 132, 10.1111/j.1551-2916.2009.03309.x Ke, 2013, Influence of rare-earth doping on the electrical properties of high voltage gradient ZnO varistors, Ceramics, 57, 53 Marjanović, 2014, Microstructural and dielectrical characterization of Ho doped BaTiO3 ceramics, Serbian J.Electr. Eng., 11, 35, 10.2298/SJEE131129004M Foeller, 2017, Novel materials and routes for rare earth free BaTiO3 based ceramics for MLCC application, Dissertation, Sheffield, UK Chou, 2007, Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics, J. Appl. Phys., 102, 84, 10.1063/1.2799081 Lu, 2006, Electron spin resonance investigations and compensation mechanism of europium-doped barium titanate ceramics, Jpn. J. Appl. Phys., 45, 8782, 10.1143/JJAP.45.8782 Li, 2010, Studies of dielectric properties of rare earth (Y, Gd, Yb) doped barium titanate sintered in pure nitrogen, J.Ferroelectrics, 407, 134, 10.1080/00150193.2010.484757 Wang, 2013, Blocking effect of crystal–glass interface in lanthanum doped barium strontium titanate glass–ceramics, Mater. Res. Bull., 48, 3817, 10.1016/j.materresbull.2013.05.088 Lu, 2013, Effect of La2O3 addition on crystallization and properties of Li2O–Al2O3–SiO2 glass-ceramics, Ceram. Int., 39, 8207, 10.1016/j.ceramint.2013.04.004 Zhou, 2013, Structural optimization and improved discharged energy density for niobate glass‐ceramics by La2O3 addition, J. Am. Ceram. Soc., 96, 372, 10.1111/jace.12159 Kim, 2011, The effect of thulium doping on the electrical properties of barium titanate ceramics for multilayered ceramic capacitors, J. Ceram. Process. Res., 12, 426 Mahajan, 2010 Xiu, 2016, Effect of rare-earth additions on the structure and dielectric energy storage properties of BaxSr1-xTiO3- based barium boron alumino silicate glass-ceramics, J. Alloys Compd., 670, 217, 10.1016/j.jallcom.2016.02.022 Jo, 2006, Effect of interface structure on the microstructural evolution of ceramics, J. Am. Ceram. Soc., 89, 2369, 10.1111/j.1551-2916.2006.01160.x Meena, 2019, Effect of ZrO2 and MgO added in alumina on the physical and mechanical properties of spark plasma sintered nanocomposite, Int. J. Refract. Metals Hard Mater., 81, 281, 10.1016/j.ijrmhm.2019.03.009 Wang, 2018, Preparation and mechanical properties of in-situ synthesized nano-MgAl2O4 particles and MgxAl(1-x)B2 whiskers co-reinforced Al matrix composites, Mater. Sci. Eng., 735, 236, 10.1016/j.msea.2018.08.054 Ma, 2015, In situ formation and densification of MgAl2O4. SmAlO3 ceramics by a single-step reaction sintering process, Ceram. Silik., 59, 104 Yuan, 2017, Preparation and properties of MgAl2O4 based ceramics reinforced with rod like microcrystallines by co-doping Sm2O3 and La2O3, Ceram. Int., 43, 16258, 10.1016/j.ceramint.2017.08.210 Jung, 2002, Study on the phase transition and characteristics of rare earth elements doped BaTiO3, Mater. Res. Bull., 37, 1633, 10.1016/S0025-5408(02)00813-9 Shi, 2020, Ti and SmAlO3 co-affected Al2O3 ceramics: microstructure, electrical and mechanical properties, J. Alloys Compd., 835, 155427, 10.1016/j.jallcom.2020.155427 El-Mehalawy, 2018, Electrical properties of ZnO/alumina nano composites for high voltage transmission line insulator, J. Mater. Sci. Mater. Electron., 10.1007/s10854-018-9480-7 Naga, 2001, Microstructure and properties of aluminous electrical porcelain doped with Mg +2 and Ca +2 ions, Interceram, 50 Salmang, 1961 Han, 2016, Study of large-scale aluminium-doped zinc oxide ceramic targets prepared by slip casting, Ann. Mater. Sci. Eng., 1 Ahmed, 1998, On the effect of dopants on the charging properties of sintered œ-alumina, 567 Shi, 2018, Combinative effects of Y2O3 and Ti on Al2O3 ceramics for optimizing mechanical and electrical properties, Ceram. Int., 44, 18382, 10.1016/j.ceramint.2018.07.054 Makuc, 2005, vols. 155–160 Khaligh, 2008, Power transformers internal insulation design improvements using electric field analysis through finite-element methods, IEEE Trans. Magn., 44, 273, 10.1109/TMAG.2007.912771