Transistor MOSFET Rào Chắn Schottky Điện Tử Kỹ Thuật Dielectric cho Ứng Dụng Cảm Biến Sinh Học: Đề Xuất và Nghiên Cứu

Silicon - Tập 14 - Trang 4053-4062 - 2021
Rahul Singh, Shweta Kaim1, Rani MedhaShree1, Anil Kumar1, Sumit Kale
1Department of Electronics and Communication Engineering, Delhi Technological University, Delhi, India

Tóm tắt

Trong bài báo này, lần đầu tiên, chúng tôi đã nghiên cứu một Transistor MOSFET Rào Chắn Schottky Điện Tử Kỹ Thuật Dielectric (DE-SBMOS) cho các ứng dụng cảm biến sinh học. DE SBMOS sử dụng kỹ thuật điện tử dielectrics và phương pháp điều chế để phát hiện các sinh phân tử. DE SBMOS kết hợp điện môi cao-k ở phía nguồn và điện môi thấp-k ở phía thoát. Ngoài ra, một khoảng trống nano được tạo ra gần vùng nguồn bằng cách khắc kim loại cổng một cách chính xác. Sự hiện diện của các sinh phân tử trong khoang dẫn đến sự thay đổi dòng điện chi phối của thiết bị. Độ nhạy của thiết bị được đề xuất được đo bằng điện áp ngưỡng (VTH), dòng ION, dòng IOFF, Độ Nghiêng Dưới Ngưỡng (SS), và dòng IDS. Ở phần sau, hiệu ứng căn chỉnh của chiều dài khoang với chiều dài vật liệu điện môi cao-k được xem xét và tạo ra ba chế độ khác nhau, tức là Cảm biến Sinh học Không Đủ (UBS), Cảm biến Sinh học Được Căn Chỉnh (ABS), Cảm biến Sinh học Chồng Chéo (OBS). Dựa trên các chế độ đã đề cập, thiết bị được đề xuất cho thấy sự lựa chọn tối ưu cho chế độ OBS.

Từ khóa

#Transistor MOSFET #Rào Chắn Schottky #Điện Tử Kỹ Thuật Dielectric #Cảm Biến Sinh Học #Độ Nhạy

Tài liệu tham khảo

Luong JHT, Male KB, Glennon JD (Sep. 2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26(5):492–500. https://doi.org/10.1016/j.biotechadv.2008.05.007 Ghosh S, Chattopadhyay A, Tewari S (2020) Optimization of hetero-gate-dielectric tunnel FET for label-free detection and identification of biomolecules. IEEE transactions on Electron Devices,1–8 67:2157–2164. https://doi.org/10.1109/ted.2020.2978499 Kanungo S, Chattopadhyay S, Gupta PS, Rahaman H (Mar. 2015) Comparative performance analysis of the dielectrically modulated full-gate and short-gate tunnel FET-based biosensors. IEEE Trans Electron Devices 62(3):994–1001. https://doi.org/10.1109/TED.2015.2390774 Kim S, Baek D, Kim JY, Choi SJ, Seol ML, Choi YK (2012) “A transistor-based biosensor for the extraction of physical properties from biomolecules,” Appl. Phys. Lett., vol. 101, no. 7, Aug. Art. no. 073703, https://doi.org/10.1063/1.4745769 Sarkar D, Banerjee K (2012) “Proposal for tunnel-field-effect-transistor as ultra-sensitive and label-free biosensors,” Appl. Phys. Lett., vol. 100,no. 14, Apr. Art. no. 143108, https://doi.org/10.1063/1.3698093 Kalra S, Kumar MJ, Dhawan A (Nov. 2016) Dielectric-modulated field effect transistors for DNA detection: impact of DNA orientation. IEEE Electron Device Lett 37(11):1485–1488. https://doi.org/10.1109/LED.2016.2613110 Narang R, Reddy KVS, Saxena M, Gupta RS, Gupta M (Oct. 2012) A dielectric-modulated tunnel-FET- based biosensor for label-free detection: analytical modeling study and sensitivity analysis. IEEE Trans. Electron Devices 59(10):2809–2817. https://doi.org/10.1109/TED.2012.2208115 Narang R, Saxena M, Gupta M (May 2015) Comparative analysis of dielectric-modulated FET and TFET-based biosensor. IEEE Trans Nanotechnol 14(3):427–435. https://doi.org/10.1109/TNANO.2015.2396899 Kanungo S, Chattopadhyay S, Gupta PS, Sinha K, Rahaman H (Jun. 2016) Study and analysis of the effects of SiGe source and pocket-doped channel on sensing performance of dielectrically modulated tunnel FET- based biosensors. IEEE Trans. Electron Devices 63(6):2589–2596. https://doi.org/10.1109/TED.2016.2556081 Larson JM, Snyder JP (May 2006) Overview and status of metal S/D Schottky-barrier MOSFET technology. in IEEE Transactions on Electron Devices 53(5):1048–1058. https://doi.org/10.1109/TED.2006.871842 Kale S, Kondekar PN (Sep 2017) Design and investigation of dielectric engineered dopant segregated Schottky barrier MOSFET with NiSi source/drain. IEEE Trans Electron Devices 64(11):4400–4407 Jhaveri R, Woo JCS (2006) “Schottky tunneling source MOSFET design for mixed mode and analog applications,” in Proc. 36th Eur. Solid State Device Res. Conf., Montreux, Switzerland, pp. 295–298,https://doi.org/10.1109/ESSDER.2006.307696 Kale S (2020) Investigation of dual metal gate Schottky barrier MOSFET for suppression of ambipolar current. IETE J Res. https://doi.org/10.1080/03772063.2020.1823250 Kale S, Kondekar PN (2015) Suppression of ambipolar leakage current in Schottky barrier MOSFET using gate engineering. Electron Lett 51(19):1536–1538. https://doi.org/10.1049/el.2015.0283 Kale S, Chandu MS (2021) Dual metal gate dielectric engineered dopant segregated Schottky barrier MOSFET with reduction in Ambipolar current. Silicon. https://doi.org/10.1007/s12633-020-00921-4 Hema Latha NK, Kale S (2020) Dielectric modulated Schottky barrier TFET for the application as label-free biosensor. Silicon 12:2673–2679. https://doi.org/10.1007/s12633-019-00363-7 Verma M, Sharma D, Pandey S, Nigam K, Kondekar PN (Jan. 2017) Performance comparison of single and dual metal dielectrically modulated TFETs for the application of label free biosensor. Superlattice Microst 101:219–227. https://doi.org/10.1016/j.spmi.2016.11.045 Ikarashi N, Watanabe K, Masuzaki K, Nakagawa T (2006) “Thermal stability of a HfO2/SiO2 interface,” Appl. Phys. Lett., vol. 88, no. 10, Art. no. 101912, https://doi.org/10.1063/1.2182023 Pitera WJ, Falta M, Gunsteren WF (Jun. 2001) Dielectric properties of proteins from simulation: the effects of solvent, ligands, pH, and temperature. Biophys J 80(6):2546–2555. https://doi.org/10.1016/S0006-3495(01)76226-1 Hill GD, Walbergh DB, Frommelt PC (Apr. 2016) Efficacy of reconstituted oral chloral hydrate from crystals for echocardiography sedation. J Amer Soc Echocardiography 29(4):337–340. https://doi.org/10.1016/j.echo.2015.11.014 Kim J-Y, Ahn JH, Choi SJ, Im M, Kim S, Duarte JP, Kim CH, Park TJ, Lee SY, Choi YK (Mar. 2012) An underlap channel-embedded field-effect transistor for biosensor application in watery and dry environment. IEEE Trans Nanotechnol 11(2):390–394. https://doi.org/10.1109/TNANO.2011.2175006 Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM (Jul. 2013) Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev 113(7):4708–4754. https://doi.org/10.1021/cr300288v Im H, Huang X-J, Gu B, Choi Y-K (Jul. 2007) A dielectric-modulated field-effect transistor for biosensing. Nature Nanotechnol 2(7):430–434. https://doi.org/10.1038/nnano.2007.180 Kannan N, Kumar MJ (Dec. 2013) Dielectric-modulated impact-ionization MOS transistor as a label-free biosensor. IEEE Electron Device Lett. 34(12):1575–1577. https://doi.org/10.1109/LED.2013.2283858 Kannan N, Kumar MJ (Aug. 2015) Charge-modulated underlap I-MOS transistor as a label-free biosensor: a simulation study. IEEE Trans. Electron Devices 62(8):2645–2651. https://doi.org/10.1109/TED.2015.2446612 Singh D, Pandey S, Nigam K, Sharma D, Yadav DS, Kondekar P (Jan. 2017) A charge-plasma-based dielectric-modulated junctionless TFET for biosensor label-free detection. IEEE Trans. Electron Devices 64(1):271–278. https://doi.org/10.1109/TED.2016.2622403 Moon D-I, Han J-W, Meyyappan M (Nov. 2016) Comparative study of field effect transistor based biosensors. IEEE Trans Nanotechnol 15(6):956–961. https://doi.org/10.1109/TNANO.2016.2615855 (2003). The International Technology Roadmap for Semiconductors (ITRS). [Online]. Available: http://www.itrs2.net ATLAS Device Simulation Software, Silvaco Int., Santa Clara, CA, USA, 2012. [Online]. Available: http://www.silvaco.com Lu X, Yang H, Ge Z, Lu N, Or DT, Kao C, Chang M, “Selective etching of silicon nitride, “U.S. Patent 8, 252,696, issued Aug. 2012, patent no.: US 8.252,696 B2 Starzynski J, “Selective hafnium oxide etchant. “U.S. Patent Application 10/938,191, filed March 16, Mar. 2006, pub. no.: US 2006/0054595 A1 Shamiryan D, Paraschiv V, Demand M, “Plasma composition for selective high-k etch. “U.S. Patent 7, 598,184, issued Oct. 2009, patent no. : US 7,598,184 B2 Brask JK, Shah U, Doczy ML, Kavalieros J, Chau RS, Turkot RB Jr, and Metz MV., “Selective etch process for making a semiconductor device having a high-k gate dielectric.” U.S. Patent 7,037,845, issued May, 2006, patent no.: US 7,037,845 B2 Zheng Z, Yu X, Xie M, Cheng R, Zhang R, Zhao Y (Jul.2016) Demonstration of ultra-thin buried oxide germanium-oninsulator MOSFETs by direct wafer bonding and polishing techniques. Applied Physics Letters 109(2):023503. https://doi.org/10.1063/1.4955486 Sze SM (1981) Physics of semiconductor devices, 2nd ed. Wiley Kumar P, Bhowmick B (Sep 2017) 2-D analytical modelling for electrostatic potential and threshold voltage of a dual work function gate Schottky barrier MOSFET. J Comput Electron 16(3):658–665 Venkatesh P, Nigam K, Pandey S, Sharma D, Kondekar PN (Sept. 2017) A dielectrically modulated electrically doped tunnel FET for application of label free biosensor. Superlattice Microst 109:470–479 Kumar P, Bhowmick B (May 2018) Scaling of dopant segregation Schottky barrier using metal strip buried oxide MOSFET and its comparison with conventional Device. Silicon 10(3):811–820 Kumar P, Bhowmick B, "2D analytical model for surface potential based electric field and impact of wok function in DMG SB MOSFET," Superlattices and Microstructures, vol. 109, pp. 805–814, Sep. 2017, https://doi.org/10.1016/j.spmi.2017.06.001 (Impact Factor : 2.117) Kumar P, Bhowmick B, "A Physics Based Threshold Voltage Model for Hetero - Dielectric Dual Material Gate Schottky Barrier MOSFET", International Journal of Numerical Modelling: Electronic Networks, Devices and Fields. (Impact Factor: 0.622) Volume31, Issue5 September/October 2017 Kumar P, Bhowmick B, "Suppression of Ambipolar Conduction and Investigation of RF Performance Characteristics of Gate Drain Underlap SiGe Schottky Barrier Field Effect Transistor", Volume: 13 , Issue: 5 , 5 2018Micro & Nano Letters, (Impact Factor: 1.7) https://doi.org/10.1049/mnl.2017.0895 Page(s): 626–630 ISSN: 1750–0443 2017, 2018 Kumar P, Bhowmick B, "Source-Drain Junction Engineering Schottky Barrier MOSFETs and their Mixed Mode Application," Silicon, vol. 12, no. 4, pp. 821–830, Apr. 2020, https://doi.org/10.1007/s12633-019-00170-0. Silicon , 2019 Kumar P, Bhowmick BB, "Comparative Analysis of Hetero Gate Dielectric Hetero Structure Tunnel FET and Schottky Barrier FET with n+ Pocket Doping for Suppression of Ambipolar Conduction and Improved RF/Linearity," J. Nanoelectron. Optoelectron., p. 11, 2018.JNO, oct 2018. (Impact Factor: 0.78) Kumar P, Bhowmick B, Vinod A "Impact of Ferroelectric on the Electrical Characteristics of Silicon-Germanium based heterojunction Schottky Barrier MOSFET", doi.org/10.1016/j.aeue.2019.05.030 ISSN-1434-8411 Volume 107, Pages 257–263 AEU, May 2019 (Impact Factor: 2.65) Kumar P, Vinod A, Krishna D, Brinda B "analysis and Simulation of Schottky tunneling using Schottky barrier FET with 2-D analytical modeling", volume 107, Silicon, JAN 2021