Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Những hệ quả đạo đức của dữ liệu quy trình: Một phân tích tài liệu hệ thống về đạo đức dữ liệu và khai thác quy trình
HMD Praxis der Wirtschaftsinformatik - Trang 1-14 - 2023
Tóm tắt
Khai thác quy trình (Process Mining - PM) là một lĩnh vực đang phát triển, thu hút ngày càng nhiều sự chú ý của các nhà nghiên cứu và người sử dụng vì tiềm năng của nó trong việc cải thiện các quy trình kinh doanh. Tuy nhiên, như bất kỳ công nghệ mới nào, PM cũng đặt ra những lo ngại về ứng dụng đạo đức. Đặc biệt liên quan đến việc thu thập, xử lý và sử dụng dữ liệu, có thể phát sinh các vấn đề. Vì vậy, bài báo này nhằm mục đích làm rõ các hệ quả đạo đức trong khai thác quy trình thông qua một phân tích tài liệu. Chúng tôi đã phân tích 39 bài báo từ sáu tạp chí trong lĩnh vực PM và 24 bài báo từ bốn tạp chí trong lĩnh vực đạo đức dữ liệu. Các kết quả cho thấy sự quan tâm ngày càng tăng đến đạo đức dữ liệu và PM, nhưng chỉ một tỷ lệ nhỏ trong số các bài báo PM được phân tích đề cập đến các nguyên tắc đạo đức dữ liệu. Nghiên cứu thêm là cần thiết trong các lĩnh vực của các nguyên tắc đạo đức dữ liệu cụ thể, như chất lượng dữ liệu và sự đồng ý có thông tin. Tổng thể, nghiên cứu này cung cấp một điểm khởi đầu cho các nghiên cứu tiếp theo về việc sử dụng đạo đức dữ liệu trong ứng dụng của PM và nhấn mạnh rằng lĩnh vực này cần được chú ý nhiều hơn.
Từ khóa
#Khai thác quy trình #đạo đức dữ liệu #nguyên tắc đạo đức #nghiên cứu hệ thốngTài liệu tham khảo
SCImago. http://www.scimagojr.com. Zugegriffen: 20. März 2023
van der Aalst W (2011) Process mining: discovery, conformance and enhancement of business processes. EBL-Schweitzer. Springer (http://swb.eblib.com/patron/FullRecord.aspx?p=763874)
van der Aalst W (2016) Process mining: data science in action, 2. Aufl. Springer, Berlin Heidelberg https://doi.org/10.1007/978-3-662-49851-4t
van der Aalst WMP, Weijters AJMM (2004) Process mining: a research agenda. Comput Ind 53(3):231–244. https://doi.org/10.1016/j.compind.2003.10.001
van der Aalst WMP, Rubin V, Verbeek HMW, van Dongen BF, Kindler E, Günther CW (2010) Process mining: a two-step approach to balance between underfitting and overfitting. Softw Syst Model 9(1):87–111. https://doi.org/10.1007/s10270-008-0106-z
Aggarwal N, Floridi L (2020) Towards the ethical publication of country of origin information (COI) in the asylum process. Minds Mach 30(2):247–257. https://doi.org/10.1007/s11023-020-09523-w
Alt R, Göldi A, Österle H, Portmann E, Spiekermann S (2021) Life engineering. Bus Inf Syst Eng 63(2):191–205. https://doi.org/10.1007/s12599-020-00680-x
Andrews R, van Dun CGJ, Wynn MT, Kratsch W, Röglinger MKE, ter Hofstede AHM (2020) Quality-informed semi-automated event log generation for process mining. Decis Support Syst 132:113265. https://doi.org/10.1016/j.dss.2020.113265
Breuker D, Matzner M, Delfmann P, Becker J (2016) Comprehensible predictive models for business processes. MIS Q 40(4):1009–1034. https://doi.org/10.25300/MISQ/2016/40.4.10
Cai L, Zhu Y (2015) The challenges of data quality and data quality assessment in the big data era. Data Sci J 14(0):2. https://doi.org/10.5334/dsj-2015-002
Caron F, Vanthienen J, Baesens B (2013) Comprehensive rule-based compliance checking and risk management with process mining. Decis Support Syst 54(3):1357–1369. https://doi.org/10.1016/j.dss.2012.12.012
Cho M, Song M, Comuzzi M, Yoo S (2017) Evaluating the effect of best practices for business process redesign: An evidence-based approach based on process mining techniques. Decis Support Syst 104:92–103. https://doi.org/10.1016/j.dss.2017.10.004
Chomanski B (2021) The missing ingredient in the case for regulating big tech. Minds Mach 31(2):257–275. https://doi.org/10.1007/s11023-021-09562-x
Crane A, Matten D (2016) Business ethics. Oxford University Press
Deutscher Ethikrat (2023) Mensch und Maschine – Herausforderungen durch Künstliche Intelligenz. Deutscher Ethikrat, Berlin
Dustdar S, Fiadeiro JL, Sheth AP (Hrsg) (2006) Business process management. 4th International Conference, BPM 2006, Vienna, September 5–7, 2006. SpringerLink Bücher, Bd. 4102. Springer, Berlin Heidelberg https://doi.org/10.1007/11841760 (Proceedings)
Elgendy N, Elragal A (2014) Big data Analytics: a literature review paper. In: Perner P (Hrsg) Advances in data mining: 14th industrial conference, ICDM 2014 St. Petersburg, July 16–20, 2014. Lecture Notes in Computer Science Ser: v.8557, Bd. 8557. Springer, Russia, S 214–227 https://doi.org/10.1007/978-3-319-08976-8_16 (Proceedings)
Floridi L (2014) Open data, data protection, and group privacy. Philos Technol 27(1):1–3. https://doi.org/10.1007/s13347-014-0157-8
Floridi L (2018) Soft ethics and the governance of the digital. Philos Technol 31(1):1–8. https://doi.org/10.1007/s13347-018-0303-9
Floridi L, Taddeo M (2016) What is data ethics? Philosophical transactions. Ser A Math Phys Eng Sci. https://doi.org/10.1098/rsta.2016.0360
Floridi L, Luetge C, Pagallo U, Schafer B, Valcke P, Vayena E, Addison J, Hughes N, Lea N, Sage C, Vannieuwenhuyse B, Kalra D (2019) Key ethical challenges in the European medical information framework. Minds Mach 29(3):355–371. https://doi.org/10.1007/s11023-018-9467-4
Hagendorff T (2020) The ethics of AI ethics: an evaluation of guidelines. Minds Mach 30(1):99–120. https://doi.org/10.1007/s11023-020-09517-8
Hand DJ (2018) Aspects of data ethics in a changing world: where are we now? Big Data 6(3):176–190. https://doi.org/10.1089/big.2018.0083
Kratsch W, König F, Röglinger M (2022) Shedding light on blind spots—Developing a reference architecture to leverage video data for process mining. Decis Support Syst 158:113794. https://doi.org/10.1016/j.dss.2022.113794
de Laat PB (2021) Companies committed to responsible AI: from principles towards implementation and regulation? Philos Technol 34(4):1135–1193. https://doi.org/10.1007/s13347-021-00474-3
Lee MSA, Floridi L (2021) Algorithmic fairness in mortgage lending: from absolute conditions to relational trade-offs. Minds Mach 31(1):165–191. https://doi.org/10.1007/s11023-020-09529-4
Loi M (2019) The digital phenotype: a philosophical and ethical exploration. Philos Technol 32(1):155–171. https://doi.org/10.1007/s13347-018-0319-1
Lowry PB, Moody GD, Gaskin J, Galletta DF, Humpherys SL, Barlow JB, Wilson DW (2013) Evaluating journal quality and the association for information systems senior scholars’ journal basket via bibliometric measures: do expert journal assessments add value? MISQ 37(4):993–1012. https://doi.org/10.25300/misq/2013/37.4.01
Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A (2022) A survey on bias and fairness in machine learning. ACM Comput Surv 54(6):1–35. https://doi.org/10.1145/3457607
Meyer G, Adomavicius G, Johnson PE, Elidrisi M, Rush WA, Sperl-Hillen JM, O’Connor PJ (2014) A machine learning approach to improving dynamic decision making. Inf Syst Res 25(2):239–263. https://doi.org/10.1287/isre.2014.0513
Mittelstadt BD, Floridi L (2016) The ethics of big data: current and foreseeable issues in biomedical contexts. Sci Eng Ethics 22(2):303–341. https://doi.org/10.1007/s11948-015-9652-2
Mökander J, Axente M, Casolari F, Floridi L (2022) Conformity assessments and post-market monitoring: a guide to the role of auditing in the proposed European AI regulation. Minds Mach 32(2):241–268. https://doi.org/10.1007/s11023-021-09577-4
Morley J, Elhalal A, Garcia F, Kinsey L, Mökander J, Floridi L (2021) Ethics as a service: a pragmatic operationalisation of AI ethics. Minds Mach 31(2):239–256. https://doi.org/10.1007/s11023-021-09563-w
Ratti E, Graves M (2021) Cultivating moral attention: a virtue-oriented approach to responsible data science in healthcare. Philos Technol 34(4):1819–1846. https://doi.org/10.1007/s13347-021-00490-3
Rozinat A, van der Aalst WMP (2006) Decision mining in proM. In: Dustdar S, Fiadeiro JL, Sheth AP (Hrsg) Business process management: 4th international conference, BPM 2006 Vienna, September 5–7, 2006. Bd. 4102. Springer, Berlin Heidelberg, S 420–425 https://doi.org/10.1007/11841760_33 (Proceedings)
Saetra HS, Danaher J (2022) To each technology its own ethics: the problem of ethical proliferation. Philos Technol. https://doi.org/10.1007/s13347-022-00591-7
Slussareff M (2022) O’Neil, cathy. 2016. Weapons of math destruction: how big data increases inequality and threatens democracy. Crown. CyberOrient 16(1):72–75. https://doi.org/10.1002/cyo2.26
Spiekermann S (2015) Ethical IT innovation: a value-based system design approach. CRC press. http://gbv.eblib.com/patron/FullRecord.aspx?p=4096994
Spiekermann S, Krasnova H, Hinz O, Baumann A, Benlian A, Gimpel H, Heimbach I, Köster A, Maedche A, Niehaves B, Risius M, Trenz M (2022) Values and ethics in information systems. Bus Inf Syst Eng 64(2):247–264. https://doi.org/10.1007/s12599-021-00734-8
Stahl BC, Eden G, Jirotka M, Coeckelbergh M (2014) From computer ethics to responsible research and innovation in ICT. Inf Manag 51(6):810–818. https://doi.org/10.1016/j.im.2014.01.001
Suriadi S, Wynn MT, Xu J, van der Aalst WMP, ter Hofstede AHM (2017) Discovering work prioritisation patterns from event logs. Decis Support Syst 100:77–92. https://doi.org/10.1016/j.dss.2017.02.002
Symons J, Alvarado R (2022) Epistemic injustice and data science technologies. Synthèse. https://doi.org/10.1007/s11229-022-03631-z
Taylor L (2021) Public actors without public values: legitimacy, domination and the regulation of the technology sector. Philos Technol 34(4):897–922. https://doi.org/10.1007/s13347-020-00441-4
Trier M, Kundisch D, Beverungen D, Müller O, Schryen G, Mirbabaie M, Trang S (2023) Digital responsibility. Bus Inf Syst Eng 65(4):463–474. https://doi.org/10.1007/s12599-023-00822-x
Turilli M, Floridi L (2009) The ethics of information transparency. Ethics Inf Technol 11(2):105–112. https://doi.org/10.1007/s10676-009-9187-9
Webster J, Watson RT (2002) Analyzing the past to prepare for the future: writing a literature review. MISQ 26(2):xiii–xxiii
Zhou W, Piramuthu S (2010) Healthcare Process Mining with RFID. In: Rinderle-Ma S (Hrsg) Business Process Management Workshops: BPM 2009 International Workshops Ulm, 7. Sept. 2009. Lecture Notes in Business Information Processing Ser: v.43., Bd. 43. Springer, Berlin, Heidelberg, S 405–411 https://doi.org/10.1007/978-3-642-12186-9_38 (Revised Papers)