Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Didymin bảo vệ tế bào beta tụy bằng cách tăng cường chức năng ty thể trong tình trạng rối loạn dung nạp glucose do chế độ ăn nhiều chất béo
Tóm tắt
Sự tiếp xúc kéo dài với axit béo tự do (FFA) trong huyết tương dẫn đến tình trạng dung nạp glucose kém (IGT), có thể tiến triển thành bệnh tiểu đường type 2 (T2D) nếu không có các can thiệp kịp thời và hiệu quả. Chế độ ăn nhiều chất béo (HFD) dẫn đến tình trạng viêm mãn tính và stress oxy hóa, làm suy giảm chức năng tế bào beta tụy (PBC). Trong khi Didymin, một glycoside flavonoid được chiết xuất từ trái cây họ cam quýt, có tác dụng tích cực đối với các rối loạn viêm, vai trò cụ thể của nó trong tình trạng IGT do HFD gây ra vẫn chưa được làm rõ. Do đó, nghiên cứu này nhằm điều tra tác dụng bảo vệ của Didymin đối với PBC. Chuột IGT do HFD và tế bào INS-1 được sử dụng để khám phá tác động và cơ chế của Didymin trong việc giảm nhẹ IGT. Mức glucose và insulin trong huyết thanh được đo trong các thử nghiệm dung nạp glucose và dung nạp insulin để đánh giá chức năng PBC và độ nhạy insulin. Tiếp theo, phân tích RNA-seq được thực hiện để xác định các con đường có thể bị ảnh hưởng bởi Didymin trong PBC. Hơn nữa, chúng tôi đã xác thực các tác dụng của Didymin cả trong ống nghiệm và in vivo. Chất ức chế vận chuyển điện tử ty thể (Rotenone) được sử dụng để xác nhận thêm rằng Didymin phát huy tác dụng cải thiện của nó bằng cách nâng cao chức năng ty thể. Didymin giảm glucose huyết sau bữa ăn và làm tăng mức insulin 30 phút sau bữa ăn ở chuột IGT. Hơn nữa, Didymin được phát hiện là làm tăng sinh và chức năng ty thể, điều chỉnh tiết insulin, đồng thời giảm viêm và apoptosis. Tuy nhiên, các tác dụng này đã bị triệt tiêu với sự điều trị bằng Rotenone, cho thấy Didymin phát huy tác dụng cải thiện của nó thông qua việc nâng cao chức năng ty thể. Didymin thể hiện tiềm năng điều trị trong việc điều trị IGT do HFD gây ra. Tác dụng tích cực này được quy cho việc cải thiện chức năng PBC thông qua việc nâng cao chức năng ty thể.
Từ khóa
#Didymin #tế bào beta tụy #chế độ ăn nhiều chất béo #chức năng ty thể #dung nạp glucose kémTài liệu tham khảo
Holzer RG, et al. Saturated fatty acids induce c-Src clustering within membrane subdomains, leading to JNK activation. Cell. 2011;147(1):173–84.
Forouhi NG, et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 Diabetes: the EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol. 2014;2(10):810–8.
El-Assaad W, et al. Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology. 2003;144(9):4154–63.
Kahn SE. The importance of the beta-cell in the pathogenesis of type 2 diabetes mellitus Am J Med, 2000. 108 Suppl 6a: p. 2s-8s.
Zhou YP, Grill VE. Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J Clin Invest. 1994;93(2):870–6.
Zhou YP, Grill V. Long term exposure to fatty acids and ketones inhibits B-cell functions in human pancreatic islets of Langerhans. J Clin Endocrinol Metab. 1995;80(5):1584–90.
Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 Diabetes. Nature. 2006;444(7121):840–6.
Clapp B, et al. American Society for Metabolic and bariatric Surgery 2020 estimate of metabolic and bariatric procedures performed in the United States. Surg Obes Relat Dis. 2022;18(9):1134–40.
Fu R, et al. Bariatric Surgery alleviates depression in obese patients: a systematic review and meta-analysis. Obes Res Clin Pract. 2022;16(1):10–6.
Saad RK, et al. Fracture risk following bariatric Surgery: a systematic review and meta-analysis. Osteoporos Int. 2022;33(3):511–26.
Sakran N, et al. Chyloperitoneum and Chylothorax following bariatric Surgery: a systematic review. Obes Surg. 2022;32(8):2764–71.
Sun Y, et al. Simultaneous determination of flavonoids in different parts of Citrus reticulata ‘Chachi’ fruit by high performance liquid chromatography-photodiode array detection. Molecules. 2010;15(8):5378–88.
Shukla K, et al. Didymin prevents hyperglycemia-induced human umbilical endothelial cells dysfunction and death. Biochem Pharmacol. 2018;152:1–10.
Huang Q, et al. Didymin ameliorates hepatic injury through inhibition of MAPK and NF-κB pathways by up-regulating RKIP expression. Int Immunopharmacol. 2017;42:130–8.
Gu L, et al. Didymin suppresses Microglia pyroptosis and Neuroinflammation through the Asc/Caspase-1/GSDMD pathway following experimental Intracerebral Hemorrhage. Front Immunol. 2022;13:810582.
Lv Q, et al. Didymin switches M1-like toward M2-like macrophage to ameliorate ulcerative Colitis via fatty acid oxidation. Pharmacol Res. 2021;169:105613.
Ghorbani A, Rashidi R, Shafiee-Nick R. Flavonoids for preserving pancreatic beta cell survival and function: a mechanistic review. Biomed Pharmacother. 2019;111:947–57.
Feng Z, et al. Didymin ameliorates dexamethasone-induced non-alcoholic fatty Liver Disease by inhibiting TLR4/NF-κB and PI3K/Akt pathways in C57BL/6J mice. Int Immunopharmacol. 2020;88:107003.
Li P, Zhao L. Developing early formulations: practice and perspective. Int J Pharm. 2007;341(1–2):1–19.
McGuinness OP, et al. NIH experiment in centralized mouse phenotyping: the Vanderbilt experience and recommendations for evaluating glucose homeostasis in the mouse. Am J Physiol Endocrinol Metab. 2009;297(4):E849–55.
Pacini G, Omar B, Ahrén B. Methods and models for metabolic assessment in mice J Diabetes Res, 2013. 2013: p. 986906.
Indo HP, et al. Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion. 2007;7(1–2):106–18.
Yang B et al. RIPK3-mediated inflammation is a conserved β cell response to ER stress. Sci Adv, 2020. 6(51).
Johnson JD, Luciani DS. Mechanisms of pancreatic beta-cell apoptosis in Diabetes and its therapies. Adv Exp Med Biol. 2010;654:447–62.
Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21(2):85–100.
Abate M, et al. Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol. 2020;98:139–53.
Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging Science, 2011. 333(6046): p. 1109-12.
Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol. 2019;20(5):267–84.
Mulder H. Transcribing β-cell mitochondria in health and Disease. Mol Metab. 2017;6(9):1040–51.
Ying W, et al. The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nat Rev Endocrinol. 2020;16(2):81–90.
Costes S, Bertrand G, Ravier MA. Mechanisms of Beta-cell apoptosis in type 2 diabetes-prone situations and potential protection by GLP-1-Based therapies. Int J Mol Sci, 2021. 22(10).
Elsner M, Gehrmann W, Lenzen S. Peroxisome-generated hydrogen peroxide as important mediator of lipotoxicity in insulin-producing cells. Diabetes. 2011;60(1):200–8.
Tiedge M, et al. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes. 1997;46(11):1733–42.
Li N, Frigerio F, Maechler P. The sensitivity of pancreatic beta-cells to mitochondrial injuries triggered by lipotoxicity and oxidative stress. Biochem Soc Trans. 2008;36(Pt 5):930–4.
Molina AJ, et al. Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes. 2009;58(10):2303–15.
Wang X, et al. ZBED6 counteracts high-fat diet-induced glucose intolerance by maintaining beta cell area and reducing excess mitochondrial activation. Diabetologia. 2021;64(10):2292–305.
Hu S et al. Acetate and butyrate improve β-cell metabolism and mitochondrial respiration under oxidative stress. Int J Mol Sci, 2020. 21(4).
Ashcroft FM. K(ATP) channels and insulin secretion: a key role in health and Disease. Biochem Soc Trans. 2006;34(Pt 2):243–6.
Eliasson L, et al. Novel aspects of the molecular mechanisms controlling insulin secretion. J Physiol. 2008;586(14):3313–24.
Wollheim CB. Beta-cell mitochondria in the regulation of insulin secretion: a new culprit in type II Diabetes. Diabetologia. 2000;43(3):265–77.
Brun T, et al. Long-chain fatty acids inhibit acetyl-CoA carboxylase gene expression in the pancreatic beta-cell line INS-1. Diabetes. 1997;46(3):393–400.
Bollheimer LC, et al. Chronic exposure to free fatty acid reduces pancreatic beta cell insulin content by increasing basal insulin secretion that is not compensated for by a corresponding increase in proinsulin biosynthesis translation. J Clin Invest. 1998;101(5):1094–101.
Collins LV, et al. Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J Leukoc Biol. 2004;75(6):995–1000.
Shimada K, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36(3):401–14.
Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020;21(4):e49799.
Vringer E, Tait SWG. Mitochondria and cell death-associated inflammation. Cell Death Differ. 2023;30(2):304–12.
Zhou R, et al. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5.
Butler AE, et al. Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 Diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes. 2003;52(9):2304–14.
Grishko V, et al. Involvement of mtDNA damage in free fatty acid-induced apoptosis. Free Radic Biol Med. 2005;38(6):755–62.
Santos JH, et al. Cell sorting experiments link persistent mitochondrial DNA damage with loss of mitochondrial membrane potential and apoptotic cell death. J Biol Chem. 2003;278(3):1728–34.
Tong B, et al. FUNDC1 modulates mitochondrial defects and pancreatic β-cell dysfunction under lipotoxicity. Biochem Biophys Res Commun. 2023;672:54–64.
Schaschkow A, et al. STAT3 regulates mitochondrial gene expression in pancreatic β-Cells and its Deficiency induces glucose intolerance in obesity. Diabetes. 2021;70(9):2026–41.
Li J, et al. Imeglimin ameliorates β-Cell apoptosis by modulating the endoplasmic Reticulum Homeostasis Pathway. Diabetes. 2022;71(3):424–39.
Zhang X, et al. Cholesterol sulfate exerts protective effect on pancreatic β-Cells by regulating β-Cell Mass and insulin secretion. Front Pharmacol. 2022;13:840406.
Andersson SA, et al. Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 Diabetes. Mol Cell Endocrinol. 2012;364(1–2):36–45.
Hung JY, et al. Didymin, a dietary flavonoid glycoside from citrus fruits, induces Fas-mediated apoptotic pathway in human non-small-cell Lung cancer cells in vitro and in vivo. Lung Cancer. 2010;68(3):366–74.
Singhal SS, et al. Didymin: an orally active citrus flavonoid for targeting neuroblastoma. Oncotarget. 2017;8(17):29428–41.
Ali MY, et al. Didymin, a dietary citrus flavonoid exhibits anti-diabetic Complications and promotes glucose uptake through the activation of PI3K/Akt signaling pathway in insulin-resistant HepG2 cells. Chem Biol Interact. 2019;305:180–94.
Lin X, et al. Didymin alleviates hepatic fibrosis through inhibiting ERK and PI3K/Akt pathways via regulation of raf kinase inhibitor protein. Cell Physiol Biochem. 2016;40(6):1422–32.
Wei J, et al. Didymin induces apoptosis through mitochondrial dysfunction and up-regulation of RKIP in human hepatoma cells. Chem Biol Interact. 2017;261:118–26.
El-Hattab AW, et al. MELAS syndrome: clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab. 2015;116(1–2):4–12.
Yamada K, Taketani T. Management and diagnosis of mitochondrial fatty acid oxidation disorders: focus on very-long-chain acyl-CoA dehydrogenase deficiency. J Hum Genet. 2019;64(2):73–85.
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative Diseases. Nature. 2006;443(7113):787–95.
Ramachandra CJA, et al. Mitochondria in acute Myocardial Infarction and cardioprotection. EBioMedicine. 2020;57:102884.