Diaphragm muscle and its feed artery after chronic respiratory airway obstruction in rats

Biophysics - Tập 55 - Trang 826-830 - 2011
A. A. Borzykh1, A. A. Andreev-Andrievskii1,2, A. P. Sharova1, O. S. Tarasova1,2, O. L. Vinogradova1
1Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
2Biological Faculty, Moscow State University, Moscow, Russia

Tóm tắt

A chronic respiratory load was produced in Wistar rats by tracheal binding to produce a twofold increase of pleural pressure oscillation amplitude during respiration. Eight weeks after the surgery, a higher proportion of type-I muscle fibers (MFI) in the costal diaphragm along with a greater MFI cross-section area and a higher succinate dehydrogenase activity in MFII in the lumbar diaphragm were observed. During recording the mechanical activity of ring preparations of diaphragm arteries under isometric conditions, an increase in endothelium-dependent relaxation was found, whereas endothelium-independent relaxation and arterial reactivity to noradrenaline did not change. Tracheal binding did not produce any changes of MF in the gastrocnemius muscle, but endothelium-dependent relaxation of gastrocnemius feed arteries was reduced. We conclude that chronic respiratory load affects the endothelial function in diaphragm arteries in a manner favorable for blood flow control in the diaphragm. Functional alterations in gastrocnemius arteries may be associated with the reduced locomotor activity of operated rats.

Tài liệu tham khảo

C. M. Bloor, Angiogenesis 8, 263 (2005). B. M. Prior, H. T. Yang, and R. L. Terjung, J. Appl. Physiol. 97, 1119 (2004). J. L. Jasperse and M. H. Laughlin, Med. Sci. Sports Exerc. 38, 445 (2006). C. R. Woodman, E. M. Price, and M. H. Laughlin, J. Appl. Physiol. 98, 940 (2005). R. M. McAllister, S. C. Newcomer, and M. H. Laughlin, Appl. Physiol. Nutr. Metab. 33, 173 (2008). S. A. Spier, M. D. Delp, C. J. Meininger, et al., J. Physiol. 556, 947 (2004). M. D. Delp and C. Duan, J. Appl. Physiol. 80, 261 (1996). S. K. Powers, D. Criswell, Fu-Kong Lieu, et al., Respir. Physiol. 89, 195 (1992). J. M. Uribe, C. S. Stump, C. M. Tipton, et al., Respir. Physiol. 88, 171 (1992). S. K. Powers and D. Criswell, Med. Sci. Sports Exerc. 28, 1115 (1996). D. J. Prezant, T. K. Aldrich, B. Richner, et al., J. Appl. Physiol. 74, 1212 (1993). T. G. Keens, V. Chen, P. Patel, et al., J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44, 905 (1978). A. Tarasiuk, S. M. Ssharf, and M. J. Miller, J. Appl. Physiol. 70, 216 (1991). O. S. Tarasova, V. U. Kalenchuk, A. A. Borzykh, et al., Biofizika 53, 1095 (2008). S. M. Hilton, M. G. Jeffries, and G. Vrbova, J. Physiol. 206(3), 543 (1970). A. Tarasiuk and Y. Segev, Respir. Physiol. Neurobiol. 145, 177 (2005). A. A. Borzykh, A. A. Andreev-Andrievskii, A. S. Borovik, et al., Byul. Eksper. Biol. Med. 147(7), 9 (2009). M. J. Mulvany and W. Halpern, Circ. Res. 41, 19 (1977). A. De Troyer, M. Sampson, S. Sigrist, et al., J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53(1), 30 (1982). M. J. Pollard, D. Mergirian, and J. H. Sherrey, Exp. Neurol. 90, 187 (1985). M. Pickering and J. F. X. Jones, Respir. Physiol. Neurobiol. 159, 21 (2007). C. L. Buus, F. Pourageaud, G. E. Fazzi, et al., Circ. Res. 89, 180 (2001). F. Pitta, T. Troosters, M. A. Spruit, et al., Am. J. Respir. Crit. Care Med. 171, 972 (2005). P. Eickhoff, A. Valipour, D. Kiss, et al., Am. J. Respir. Crit. Care Med. 178, 1211 (2008). M. H. Laughlin and B. Roseguini, J. Physiol. Pharmacol. 59(7), 71 (2008). K. Hill, S. C. Jenkins, D. R. Hillman, et al., Aust. J. Physiother. 50, 169 (2004).