Diamond nanospherulite: A novel material produced at carbon-water interface by pulsed-laser ablation

Science in China Series B: Chemistry - Tập 40 - Trang 608-615 - 1997
Yuhuang Wang1, Qunjian Huang1, Zhong Chen1, Rongbin Huang1, Lansun Zheng1
1State Key Laboratory of Physical Chemistry on Solid Surface, Department of Chemistry, Xiamen University, Xiamen, China

Tóm tắt

Formation of carbon nanoparticles with perfectly spherical shape and diamond structure (diamond nanospherulite) by laser-ablating a variety of carbon samples in water is reported for the first time. The studies reveal that molten carbon nanoparticles generated by laser ablation are quenched directly by water and end up as diamond nanospherulites, possibly due to the high pressure arising from surface tension and the high stability resulting from termination of dangling bonds with hydrogen atoms.

Tài liệu tham khảo

Sato, T., Furuno, S., Iguchi, S.et al., Diamond-like carbon films prepared by pulsed-laser evaporation,Appl. Phys., 1988. A45: 355. Wang, C. Z., Ho, K. M., Structure, dynamics and electronic properties of diamond-like amorphous carbon,Phys. Rev. Lett., 1993, 71(8): 1184. Jiang, X., Schiffmann, K., Westphal, A.et al., Atomic-force-microscopic study of heteroepitaxial diamond nucleation on (100) silicon,Appl. Phys. Lett., 1993, 63(9): 1203. Polo, M. C., Cifre, J., Sanchez, G.et al., Pulsed laser deposition of diamond from graphite targets,Appl. Phys. Lett., 1995. 67(4): 485. Voevodin, A. A., Laube, S. J. P., Walck, S. D., Pulsed-laser deposition of diamond-like amorphous carbon films from graphite and polycarbonate targets,J. Appl. Phys., 1995, 78(6): 4123. Cheng, D. D., Yu, R. Q., Liu, Z. Y.etal., Preparation of carbon nanotubes from laser ablation,Chem. J. Chin. Univ. (in Chinese), 1995, 16(6): 948. Kang, Z. C., Wang, Z. L., On accretion of nanosize carbon sphere,J. Phys. Chem., 1996, 100: 5163. Ugrate, D., Curling and closure of graphitic networks under electron beam irradition,Nature, 1992, 359: 707. Bundy, F. P., Kasper, J. S., Hexagonal diamond—a new form of carbon,J. Chem. Phys., 1967, 46: 3437. Nemanich, R. J., Solin, S. A., First-and second-order Raman scattering from finite-size crystals of graphite,Phy. Rev. B, 1979, 20(2): 392. Yoshikatsu, N., Ebrahim, H., Masatoshi, N., Size effects appearing in the Raman spectra of polycrystalline diamonds,J. Appl. Phys., 1992, 72(5): 1748. Golzan, M. M., Lukins, P. B., Mckenzie, D. R.etal., NMR evidence for strained carbon bonding in tetrahedral amorphous carbon,Chem. Phys., 1995, 193: 167. Venkatesan, T., Jacobson, D. C., Gibson, J. M.et al., Measurement of thermodynamic parameters of graphite by pulsedlaser melting and ion channeling,Phys. Rev. Lett., 1984, 53(4): 360. Wang, Y. H., Zhang, Q., Liu, Z. Y.etal., Production of carbon nanotubes at carbon-water interface by pulsed-laser ablation,Acta. Phys. Chim., 1996, 12(10): 905. Badziag, P., Verwoerd, W. S., Ellis, W. P.etal., Nanometer-sized diamonds are more stable than graphite,Nature, 1990, 343: 244. Hwang, N. M., Hahn, J. H., Yoon, D. Y., Chemical potential of carbon in the low pressure synthesis of diamond,J. Cryst. Growth, 1996, 160: 87.