Diamines, CS2 and Monoisocyanide-participated Polymerizations for Large-scale Synthesis of Polythioureas and Thioformamide

Chinese Journal of Polymer Science - Tập 41 - Trang 1563-1576 - 2023
Jie Zhang1, Fan Ye1, Jin-Lei Huo1, Jian-Wen Peng1, Rong-Rong Hu1, Ben Zhong Tang2,3
1State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, China
2Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
3AIE Institute, Guangzhou, China

Tóm tắt

Multicomponent polymerizations (MCPs) are powerful tools to synthesize functional polymers with great structural diversity, low cost and high efficiency, which usually generate single polymer product. Herein, a robust one-pot diamines, CS2 and monoisocyanide-participated catalyst-free polymerization was developed at room temperature to produce polythiourea and thioformamide simultaneously in equal equivalent, which was featured with cheap monomers, simple operation and mild condition, affording various polythioureas with high Mws of up to 47500 g/mol in high yields of up to 98%. Polythioureas with varied chain composition and sequence-controlled structure could be synthesized in 62 g-scale from copolymerization or multicomponent tandem polymerization, enabling facile tuning of thermal property, crystallinity, mechanical property, and fluorescence. The abundant irregular hydrogen bonds endowed the polythioureas excellent glassy state self-healing property at room temperature or below 0 °C. This polymerization provided an efficient and economic approach to access functional polythioureas.

Tài liệu tham khảo

Meier, M. A. R.; Hu, R.; Tang, B. Z. Multicomponent reactions in polymer science. Macromol. Rapid Commun. 2021, 42, 2100104. Kreye, O.; Tóth, T.; Meier, M. A. R. Introducing multicomponent reactions to polymer science: passerini reactions of renewable monomers. J. Am. Chem. Soc. 2011, 133, 1790–1792. Deng, X. X.; Li, L.; Li, Z. L.; Lv, A.; Du, F. S.; Li, Z. C. Sequence regulated poly(ester-amide)s based on Passerini reaction. ACS Macro Lett. 2012, 1, 1300–1303. Leitch, D. C.; Kayser, L. V.; Han, Z. Y.; Siamaki, A. R.; Keyzer, E. N.; Gefen, A.; Arndtsen, B. A. A Palladium-catalysed multicomponent coupling approach to conjugated poly(1,3-dipoles) and polyheterocycles. Nat. Commun. 2015, 6, 7411. Xue, H.; Zhao, Y.; Wu, H.; Wang, Z.; Yang, B.; Wei, Y.; Wang, Z.; Tao, L. Multicomponent combinatorial polymerization via the biginelli reaction. J. Am. Chem. Soc. 2016, 138, 8690–8693. Stiernet, P.; Debuigne, A. Imine-based multicomponent polymerization: concepts, structural diversity and applications. Prog. Polym. Sci. 2022, 128, 101528. Kleine, T. S.; Glass, R. S.; Lichtenberger, D. L.; Mackay, M. E.; Char, K.; Norwood, R. A.; Pyun, J. 100th Anniversary of macromolecular science viewpoint: high refractive index polymers from elemental sulfur for infrared thermal imaging and optics. ACS Macro Lett. 2020, 9, 245–259. Scheiger, J. M.; Direksilp, C.; Falkenstein, P.; Welle, A.; Koenig, M.; Heissler, S.; Matysik, J.; Levkin, P. A.; Theato, P. Inverse vulcanization of styrylethyltrimethoxysilane-coated surfaces, particles, and crosslinked materials. Angew. Chem. Int. Ed. 2020, 59, 18639–18645. Xin, Y.; Peng, H.; Xu, J.; Zhang, J. Ultrauniform embedded liquid metal in sulfur polymers for recyclable, conductive, and self-healable materials. Adv. Funct. Mater. 2019, 29, 1808989. Rech, J. J.; Yan, L.; Peng, Z.; Dai, S.; Zhan, X.; Ade, H.; You, W. Utilizing difluorinated thiophene units to improve the performance of polymer solar cells. Macromolecules 2019, 52, 6523–6532. Feng, Y.; Hasegawa, Y.; Suga, T.; Nishide, H.; Yang, L.; Chen, G.; Li, S. Tuning conformational H-bonding arrays in aromatic/alicyclic polythiourea toward high energy-storable dielectric material. Macromolecules 2019, 52, 8781–8787. Kawai, Y.; Kanbara, T.; Hasegawa, K. Preparation of Polythioamides from dialdehydes and 4,4′-trimethylenedipiperidine with sulfur by the Willgerodt-Kindler reaction. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 1737–1740. Li, W.; Wu, X.; Zhao, Z.; Qin, A.; Hu, R.; Tang, B. Z. Catalyst-free, atom-economic, multicomponent polymerizations of aromatic diynes, elemental sulfur, and aliphatic diamines toward luminescent polythioamides. Macromolecules 2015, 48, 7747–7754. Cao, W.; Dai, F.; Hu, R.; Tang, B. Z. Economic sulfur conversion to functional polythioamides through catalyst-free multicomponent polymerizations of sulfur, acids, and amines. J. Am. Chem. Soc. 2020, 142, 978–986. Tian, T.; Hu, R.; Tang, B. Z. Room temperature one-step conversion from elemental sulfur to functional polythioureas through catalyst-free multicomponent polymerizations. J. Am. Chem. Soc. 2018, 140, 6156–6163. Espeel, P.; Goethals, F.; Du Prez, F. E. One-pot multistep reactions based on thiolactones: extending the realm of thiol-ene chemistry in polymer synthesis. J. Am. Chem. Soc. 2011, 133, 1678–1681. Yang, L.; Zhang, Z.; Cheng, B.; You, Y.; Wu, D.; Hong, C. Two tandem multicomponent reactions for the synthesis of sequence-defined polymers. Sci. China Chem. 2015, 58, 1734–1740. Lee, I. H.; Kim, H.; Choi, T. L. Cu-catalyzed multicomponent polymerization to synthesize a library of poly(N-sulfonylamidines). J. Am. Chem. Soc. 2013, 135, 3760–3763. Huang, Y.; Xu, L.; Hu, R.; Tang, B. Z. Cu(I)-catalyzed heterogeneous multicomponent polymerizations of alkynes, sulfonyl azides, and NH4Cl. Macromolecules 2020, 53, 10366–10374. Zhang, J.; Zang, Q.; Yang, F.; Zhang, H.; Sun, J. Z.; Tang, B. Z. Sulfur conversion to multifunctional poly(O-thiocarbamate)s through multicomponent polymerizations of sulfur, diols, and diisocyanides. J. Am. Chem. Soc. 2021, 143, 3944–3950. Ochiai, B.; Ogihara, T.; Mashiko, M.; Endo, T. Synthesis of rare-metal absorbing polymer by three-component polyaddition through combination of chemo-selective nucleophilic and radical additions. J. Am. Chem. Soc. 2009, 131, 1636–1637. Yanagisawa, Y.; Nan, Y.; Okuro, K.; Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 2018, 359, 72–76. Feng, H.; Zheng, N.; Peng, W.; Ni, C.; Song, H.; Zhao, Q.; Xie, T. Upcycling of dynamic thiourea thermoset polymers by intrinsic chemical strengthening. Nat. Commun. 2022, 13, 397. Fujisawa, Y.; Asano, A.; Itoh, Y.; Aida, T. Mechanically robust, self-healable polymers usable under high humidity: humidity-tolerant noncovalent cross-linking strategy. J. Am. Chem. Soc. 2021, 143, 15279–15285. Li, Y. M.; Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Tailored modular assembly derived self-healing polythioureas with largely tunable properties covering plastics, elastomers and fibers. Nat. Commun. 2022, 13, 2633. Wu, S.; Li, W.; Lin, M.; Burlingame, Q.; Chen, Q.; Payzant, A.; Xiao, K.; Zhang, Q. M. Aromatic polythiourea dielectrics with ultrahigh breakdown field strength, low dielectric loss, and high electric energy density. Adv. Mater. 2013, 25, 1734–1738. Sharma, V.; Wang, C.; Lorenzini, R. G.; Ma, R.; Zhu, Q.; Sinkovits, D. W.; Pilania, G.; Oganov, A. R.; Kumar, S.; Sotzing, G. A.; Boggs, S. A.; Ramprasad, R. Rational design of all organic polymer dielectrics. Nat. Commun. 2014, 5, 4845. Ma, R.; Sharma, V.; Baldwin, A. F.; Tefferi, M.; Offenbach, I.; Cakmak, M.; Weiss, R.; Cao, Y.; Ramprasad, R.; Sotzing, G. A. Rational design and synthesis of polythioureas as capacitor dielectrics. J. Mater. Chem. A 2015, 3, 14845–14852. Yamazaki, N.; Higashi, F.; Iguchi, T. Polyureas and polythioureas from carbon dioxide and disulfide with diamines under mild conditions. J. Polym. Sci., Polym. Lett. Ed. 1974, 12, 517–521. Wu, S.; Luo, M.; Darensbourg, D. J.; Zuo, X. Catalyst-free construction of versatile and functional CS2-based polythioureas: characteristics from self-healing to heavy metal absorption. Macromolecules 2019, 52, 8596–8603. Banihashemi, A.; Hazarkhani, H.; Abdolmaleki, A. Efficient and rapid synthesis of polyureas and polythioureas from the reaction of urea and thiourea with diamines under microwave irradiation. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 2106–2111. Diebler, J.; Komber, H.; Häußler, L.; Lederer, A.; Werner, T. Alkoxide-initiated regioselective coupling of carbon disulfide and terminal epoxides for the synthesis of strongly alternating copolymers. Macromolecules 2016, 49, 4723–4731. Nakano, K.; Tatsumi, G.; Nozaki, K. Synthesis of sulfur-rich polymers: copolymerization of episulfide with carbon disulfide by using [PPN]Cl/(salph)Cr(III)Cl system. J. Am. Chem. Soc. 2007, 129, 15116–15117. Silvano, S.; Carrozza, C. F.; de Angelis, A. R.; Tritto, I.; Boggioni, L.; Losio, S. Synthesis of sulfur-rich polymers: copolymerization of cyclohexene sulfide and carbon disulfide using chromium complexes. Macromolecules 2020, 53, 8837–8846. Zhang, C. J.; Zhang, X. H. Chemoselective coupling of CS2 and epoxides for producing poly(thioether)s and COS via oxygen/sulfur atom exchange. Macromolecules 2020, 53, 233–239. Plajer, A. J.; Williams, C. K. Heterocycle/heteroallene ring-opening copolymerization: selective catalysis delivering alternating copolymers. Angew. Chem. Int. Ed. 2022, 61, e202104495. Nagai, D.; Imazeki, T.; Morinaga, H.; Nakabayashi, H. Synthesis of a rare-metal adsorbing polymer by three-component polyaddition of diamines, carbon disulfide, and diacrylates in an aqueous/organic biphasic medium. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 5968–5973. Halimehjani, A. Z.; Mohtasham, R.; Shockravi, A.; Martens, J. Multicomponent synthesis of dithiocarbamates starting from vinyl sulfones/sulfoxides and their use in polymerization reactions. RSC Adv. 2016, 6, 75223–75226. Zhao, C.; Meng, X.; Lu, R.; Xie, H.; Liu, J. Sulfur-containing polymers from terpolymerization of active methylene compounds, carbon disulfide, and dihalohydrocarbons: synthesis and properties. Polym. Chem. 2019, 10, 5333–5338. DeMartino, A. W.; Zigler, D. F.; Fukuto, J. M.; Ford, P. C. Carbon disulfide. Just toxic or also bioregulatory and/or therapeutic. Chem. Soc. Rev. 2017, 46, 21–39. Murai, T.; Hori, F.; Maruyama, T. Intramolecular cyclization of in situ generated adducts formed between thioamide dianions and thioformamides leading to generation of 5-amino-2-thiazolines and 5-aminothiazoles, and their fluorescence properties. Org. Lett. 2011, 13, 1718–1721. Scott, M. K.; Jacoby, H. I.; Mills, J. E.; Bonfilio, A. C.; Rasmussen, C. R. 4-(Diphenylmethyl)-1-(iminomethyl)piperidines as gastric antisecretory agents. J. Med. Chem. 1983, 26, 535–538. de la Vega-Hernández, K.; Senatore, R.; Miele, M.; Urban, E.; Holzer, W.; Pace, V. Chemoselective reduction of isothiocyanates to thioformamides mediated by the schwartz reagent. Org. Biomol. Chem. 2019, 17, 1970–1978. Ghorbani-Choghamarani, A.; Taherinia, Z. Fe3O4@GlcA@Cu-MOF: a magnetic metal-organic framework as a recoverable catalyst for the hydration of nitriles and reduction of isothiocyanates, isocyanates, and isocyanides. ACS Comb. Sci. 2020, 22, 902–909. Anary-Abbasinejad, M.; Karimi, N.; Mehrabi, H.; Ranjbar-Karimi, R. A simple route for the synthesis of symmetrical thiourea derivatives and amidinium cations by reaction between isocyanides, amines and carbon disulfide. J. Sulfur Chem. 2012, 33, 653–659. Abás, S.; Moens, U.; Escolano, C. Facile microwave-assisted synthesis of thioformamides from isocyanides and carbon disulfide. Tetrahed. Lett. 2017, 58, 2768–2770. Patil, P.; Ahmadian-Moghaddam, M.; Dömling, A. Isocyanide 2.0. Green Chem. 2020, 22, 6902–6911. Humeres, E.; Debacher, N. A.; Sierra, M. M. d. S.; Franco, J. D.; Schutz, A. Mechanisms of acid decomposition of dithiocarbamates. 1. Alkyl dithiocarbamates. J. Org. Chem. 1998, 63, 1598–1603. Zhang, J.; Liu, Z.; Yin, Z.; Yang, X.; Ma, Y.; Szostak, R.; Szostak, M. Preference of cis-thioamide structure in N-thioacyl-N-methylanilines. Org. Lett. 2020, 22, 9500–9505. Huang, Z.; Zhao, J.; Wang, Z.; Meng, F.; Ding, K.; Pan, X.; Zhou, N.; Li, X.; Zhang, Z.; Zhu, X. Combining orthogonal chain-end deprotections and thiol-maleimide Michael coupling: engineering discrete oligomers by an iterative growth strategy. Angew. Chem. Int. Ed. 2017, 56, 13612–13617. De Franceschi, I.; Mertens, C.; Badi, N.; Du Prez, F. Uniform soluble support for the large-scale synthesis of sequence-defined macromolecules. Polym. Chem. 2022, 13, 5616–5624. Liao, P.; Huang, J.; Yan, Y.; Tang, B. Z. Clusterization-triggered emission (CTE): one for all, all for one. Mater. Chem. Front 2021, 5, 6693–6717. Wang, Q.; Dou, X.; Chen, X.; Zhao, Z.; Wang, S.; Wang, Y.; Sui, K.; Tan, Y.; Gong, Y.; Zhang, Y.; Yuan, W. Z. Reevaluating protein photoluminescence: remarkable visible luminescence upon concentration and insight into the emission mechanism. Angew. Chem. Int. Ed. 2019, 58, 12667–12673. Han, B.; Yan, Q.; Xin, Z.; Liu, Q.; Li, D.; Wang, J.; He, G. Color-tunable and bright nonconjugated fluorescent polymer dots and fast photodegradation of dyes under visible light. Aggregate 2021, e147. Li, C. H.; Wang, C.; Keplinger, C.; Zuo, J. L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; You, X. Z.; Bao, Z. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8, 618–624. Wang, X.; Zhan, S.; Lu, Z.; Li, J.; Yang, X.; Qiao, Y.; Men, Y.; Sun, J. Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance. Adv. Mater. 2020, 32, 2005759. Ji, X.; Li, Z.; Hu, Y.; Xie, H.; Wu, W.; Song, F.; Liu, H.; Wang, J.; Jiang, M.; Lam Jacky, W. Y.; Tang, B. Z. Bioinspired hydrogels with muscle-like structure for AIEgen-guided selective self-healing. CCS Chem. 2020, 3, 1146–1156. Wang, S.; Urban, M. W. Self-healing polymers. Nat. Rev. Mater. 2020, 5, 562–583. Wang, H.; Liu, H.; Cao, Z.; Li, W.; Huang, X.; Zhu, Y.; Ling, F.; Xu, H.; Wu, Q.; Peng, Y.; Yang, B.; Zhang, R.; Kessler, O.; Huang, G.; Wu, J. Room-temperature autonomous self-healing glassy polymers with hyperbranched structure. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 11299–11305. Xu, J.; Chen, J.; Zhang, Y.; Liu, T.; Fu, J. A Fast room-temperature self-healing glassy polyurethane. Angew. Chem. Int. Ed. 2021, 60, 7947–7955.