Diameters, distortion, and eigenvalues
Tài liệu tham khảo
Alon, 1985, λ1, isoperimetric inequalities for graphs, and superconcentrators, J. Combin. Theory Ser. B, 38, 73, 10.1016/0095-8956(85)90092-9
Amghibech, 2006, Bounds for the largest p-Laplacian eigenvalue for graphs, Discrete Math., 306, 2762, 10.1016/j.disc.2006.05.012
T. Austin, A. Naor, A. Valette, The Euclidean distortion of the lamplighter group. arXiv:0705.4662v1 [math.MG].
Bartholdi, 2000, On the spectrum of Hecke type operators related to some fractal groups, Tr. Mat. Inst. Steklova, 231
Bartholdi, 2003, From fractal groups to fractal sets, 25
Bartholdi, 2003, Branch groups, vol. 3, 989
Biyikoǧlu, 2009, Largest eigenvalues of the discrete p-Laplacian of trees with degree sequences, Electron. J. Linear Algebra, 18, 202, 10.13001/1081-3810.1305
I. Bondarenko, Groups generated by bounded automata and their Schreier graphs, Dissertation, Texas A&M University, 2007.
Bourgain, 1985, On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J. Math., 52, 46, 10.1007/BF02776078
Bühler, 2009, Spectral clustering based on the graph p-Laplacian, 81
Chung, 1989, Diameters and eigenvalues, J. Amer. Math. Soc., 2, 187, 10.1090/S0894-0347-1989-0965008-X
Chung, 2006, The diameter and Laplacian eigenvalues of directed graphs, Electron. J. Combin., 13, 10.37236/1142
Chung, 1997, vol. 92
D. D’Angeli, A. Donno, M. Matter, T. Nagnibeda, Schreier graphs of the Basilica group. arXiv:0911.2915v5.
de Abreu, 2007, Old and new results on algebraic connectivity of graphs, Linear Algebra Appl., 423, 53, 10.1016/j.laa.2006.08.017
de la Harpe, 2000, Topics in Geometric Group Theory
Grigorchuk, 1984, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat., 48, 939
Grigorchuk, 1980, On Burnside’s problem on periodic groups, Funktsional. Anal. i Prilozhen., 14, 53, 10.1007/BF01078416
Grigorchuk, 2000, Just infinite branch groups, vol. 184, 121
Grigorchuk, 2000, Automata, dynamical systems, and groups, Tr. Mat. Inst. Steklova, 231, 128
Grigorchuk, 2008, Groups of intermediate growth: an introduction, Enseign. Math. (2), 54, 251
Grigorchuk, 2007, The spectral problem, substitutions and iterated monodromy, vol. 42, 225
Grigorchuk, 2006, Asymptotic aspects of Schreier graphs and Hanoi Towers groups, C. R. Math. Acad. Sci. Paris, 342, 545, 10.1016/j.crma.2006.02.001
Grigorchuk, 2007, Self-similarity and branching in group theory, vol. 339, 36
Grigorchuk, 2008, Schreier spectrum of the Hanoi Towers group on three pegs, vol. 77, 183
Grigorchuk, 2001, The lamplighter group as a group generated by a 2-state automaton, and its spectrum, Geom. Dedicata, 87, 209, 10.1023/A:1012061801279
Grigorchuk, 2002, On a torsion-free weakly branch group defined by a three state automaton, Internat. J. Algebra Comput., 12, 223, 10.1142/S0218196702001000
Hinz, 1989, The Tower of Hanoi. Enseign. Math. (2), 35, 289
Johnson, 2009, Diamond graphs and super-reflexivity, J. Topol. Anal., 1, 177, 10.1142/S1793525309000114
Kaimanovich, 2005, Münchhausen trick and amenability of self-similar groups, Internat. J. Algebra Comput., 15, 907, 10.1142/S0218196705002694
Linial, 1995, The geometry of graphs and some of its algorithmic applications, Combinatorica, 15, 215, 10.1007/BF01200757
Linial, 2002, Girth and Euclidean distortion, Geom. Funct. Anal., 12, 380, 10.1007/s00039-002-8251-y
Matoušek, 2002, vol. 212
Nekrashevych, 2005, Self-similar groups, vol. 117
Quint, 2009, Harmonic analysis on the Pascal graph, J. Funct. Anal., 256, 3409, 10.1016/j.jfa.2009.01.011
Rogers, 2010, Laplacians on the basilica Julia sets, Commun. Pure Appl. Anal., 9, 211, 10.3934/cpaa.2010.9.211
Szegedy, 1999, In how many steps the k peg version of the Towers of Hanoi game can be solved?, vol. 1563, 356
Takeuchi, 2003, The spectrum of the p-Laplacian and p-harmonic morphisms on graphs, Illinois J. Math., 47, 939, 10.1215/ijm/1258138202
Teplyaev, 1998, Spectral analysis on infinite Sierpinski gaskets, J. Funct. Anal., 159, 537, 10.1006/jfan.1998.3297