Diameter estimate for closed manifolds with positive scalar curvature

Journal of Geometry and Physics - Tập 178 - Trang 104545 - 2022
Xuenan Fu1, Jia-Yong Wu1
1Department of Mathematics, Shanghai University, Shanghai, 200444, China

Tài liệu tham khảo

Akutagawa, 2021, The Yamabe invariant, Sūgaku Expo., 34, 1 Akutagawa, 1994, Yamabe metrics of positive scalar curvature and conformally flat manifolds, Differ. Geom. Appl., 4, 239, 10.1016/0926-2245(94)00015-8 Alves de Medeiros, 2015, The weighted Sobolev and mean value inequalities, Proc. Am. Math. Soc., 143, 1229, 10.1090/S0002-9939-2014-12337-9 Aubin, 1976, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., 55, 269 Bakry, 1996, Sobolev inequalities and Myers's diameter theorem for an abstract Markov generator, Duke Math. J., 85, 253, 10.1215/S0012-7094-96-08511-7 Deng, 2014, A note on complete manifolds with finite volume, Acta Math. Sci. Ser. B Engl. Ed., 34, 807, 10.1016/S0252-9602(14)60051-5 Gursky, 1994, Locally conformally flat four- and six-manifolds of positive scalar curvature and positive Euler characteristic, Indiana Univ. Math. J., 43, 747, 10.1512/iumj.1994.43.43033 Hebey, 1996, Sobolev Spaces on Riemannian Manifolds, vol. 1635 1988, vol. E12 Lee, 1987, The Yamabe problem, Bull. Am. Math. Soc., 17, 37, 10.1090/S0273-0979-1987-15514-5 Myers, 1941, Riemannian manifold with positive mean curvature, Duke Math. J., 8, 401, 10.1215/S0012-7094-41-00832-3 Paeng, 2014, Diameter of an immersed surface with boundary, Differ. Geom. Appl., 33, 127, 10.1016/j.difgeo.2014.02.007 Paeng, 2015, Volumes and intrinsic diameters of hypersurfaces, J. Geom. Phys., 95, 96, 10.1016/j.geomphys.2015.05.001 Roth, 2015, A new result about almost umbilical hypersurfaces of real space forms, Bull. Aust. Math. Soc., 91, 145, 10.1017/S0004972714000732 Schoen, 1984, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differ. Geom., 20, 479, 10.4310/jdg/1214439291 Topping, 2005, Diameter control under Ricci flow, Commun. Anal. Geom., 13, 1039, 10.4310/CAG.2005.v13.n5.a9 Topping, 2008, Relating diameter and mean curvature for submanifolds of Euclidean space, Comment. Math. Helv., 83, 539, 10.4171/CMH/135 Trudinger, 1968, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Sc. Norm. Super. Pisa, 22, 265 Wu, 2021, Sharp upper diameter bounds for compact shrinking Ricci solitons, Ann. Glob. Anal. Geom., 60, 19, 10.1007/s10455-021-09764-7 Wu, 2011, Relating diameter and mean curvature for Riemannian submanifolds, Proc. Am. Math. Soc., 139, 4097, 10.1090/S0002-9939-2011-10848-7 Yamabe, 1960, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J., 12, 21 Zhang, 2014, On the question of diameter bounds in Ricci flow, Ill. J. Math., 58, 113