Diagnosis of COVID-19 using CT scan images and deep learning techniques

Vruddhi Shah1, Rinkal Keniya1, Akanksha Shridharani1, Manav Punjabi1, Jainam Shah1, Ninad Mehendale1
1K. J. Somaiya College of Engineering, Somaiya Vidyavihar University, Vidyavihar, Mumbai, 400077, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wang C, Horby PW, Hayden FG, Gao GF (2020) A novel coronavirus outbreak of global health concern. Lancet 395(10223):470

Wang LS, Wang YR, Ye DW, Liu QQ (2020) A review of the 2019 novel coronavirus (covid-19) based on current evidence. International journal of antimicrobial agents, 105948

Singhal T (2020) A review of coronavirus disease-2019 (covid-19). The Indian Journal of Pediatrics, 1–6

Wang R, Pan M, Zhang X, Han M, Fan X, Zhao F, Miao M, Xu J, Guan M, Deng X et al (2020) Epidemiological and clinical features of 125 hospitalized patients with covid-19 in Fuyang, Anhui, China. Int J Infect Dis 95:421

Tang YW, Schmitz JE, Persing DH, Stratton CW (2020) Laboratory diagnosis of covid-19: current issues and challenges. J Clin Microbiol 58(6):512–520. https://doi.org/10.1128/JCM.00512-20

Hussain A, Kaler J, Tabrez E, Tabrez S, Tabrez SS (2020) Novel covid-19: a comprehensive review of transmission, manifestation, and pathogenesis. Cureus 12(5):8184. https://doi.org/10.7759/cureus.8184

Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, Bi Z, Zhao Y (2020) Prevalence and impact of cardiovascular metabolic diseases on covid-19 in China. Clin Res Cardiol 109(5):531

Liu Z, Xiao X, Wei X, Li J, Yang J, Tan H, Zhu J, Zhang Q, Wu J, Liu L (2020) Composition and divergence of coronavirus spike proteins and host ace2 receptors predict potential intermediate hosts of sars-cov-2. J Med Virol 92(6):595

Breban R, Riou J, Fontanet A (2013) Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk. Lancet 382(9893):694

Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acharya UR (2020) Automated detection of covid-19 cases using deep neural networks with x-ray images. Computers in Biology and Medicine, 103792

Singh D, Kumar V, Kaur M (2020) Classification of covid-19 patients from chest ct images using multi-objective differential evolution–based convolutional neural networks. European Journal of Clinical Microbiology & Infectious Diseases, 1–11

Anjishnu Das SK (2020) Why covid testing is a slow process and types of tests available

Shen D, Wu G, Suk HI (2017) Deep learning in medical image analysis. Ann Rev Biomed Eng 19:221

Ker J, Wang L, Rao J, Lim T (2017) Deep learning applications in medical image analysis. Ieee Access 6:9375

Grewal M, Srivastava MM, Kumar P, Varadarajan S (2018) Radnet: Radiologist level accuracy using deep learning for hemorrhage detection in ct scans. In: IEEE 15th International symposium on biomedical imaging (ISBI 2018). IEEE, pp 281–284

Song Q, Zhao L, Luo X, Dou X (2017) Using deep learning for classification of lung nodules on computed tomography images. Journal of healthcare engineering, 2017

González G, Ash SY, Vegas-Sánchez-Ferrero G, Onieva Onieva J, Rahaghi FN, Ross JC, Díaz A, San José Estépar R, Washko GR (2018) Disease staging and prognosis in smokers using deep learning in chest computed tomography. Am J Respir Crit Care Med 197(2):193

Ye Z, Zhang Y, Wang Y, Huang Z, Song B (2020) Chest ct manifestations of new coronavirus disease 2019 (covid-19): a pictorial review. European Radiology, 1–9

Zhao W, Zhong Z, Xie X, Yu Q, Liu J (2020) Relation between chest CT findings and clinical conditions of coronavirus disease (covid-19) pneumonia: a multicenter study. Am J Roentgenol 214 (5):1072

Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, Diao K, Lin B, Zhu X, Li K et al (2020) Chest CT findings in coronavirus disease-19 (covid-19): relationship to duration of infection. Radiology, 200463

Zhao J, Zhang Y, He X, Xie P (2020) Covid-CT-dataset: a CT scan dataset about covid-19. arXiv:2003.13865

Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W, Bernheim A, Siegel E (2020) Rapid ai development cycle for the coronavirus (covid-19) pandemic: initial results for automated detection & patient monitoring using deep learning ct image analysis. arXiv:2003.05037

Wu J, Wu X, Zeng W, Guo D, Fang Z, Chen L, Huang H, Li C (2020) Chest CT findings in patients with coronavirus disease 2019 and its relationship with clinical features. Investig Radiol 55 (5):257

Zheng C, Deng X, Fu Q, Zhou Q, Feng J, Ma H, Liu W, Wang X (2020) Deep learning-based detection for covid-19 from chest CT using weak label, medRxiv

Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, Tao Q, Sun Z, Xia L (2020) Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (covid-19) in China: a report of 1014 cases. Radiology, 200642

Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P, Ji W (2020) Sensitivity of chest CT for covid-19: comparison to RT-PCR. Radiology, 200432

Murphy K, Smits H, Knoops AJ, Korst MB, Samson T, Scholten ET, Schalekamp S, Schaefer-Prokop CM, Philipsen RH, Meijers A et al (2020) Covid-19 on the chest radiograph: a multi-reader evaluation of an AI system. Radiology, 201874

Lee CI, Forman HP (2007) Ct screening for lung cancer: implications on social responsibility. Am J Roentgenol 188(2): 297