Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis

Nature Energy - Tập 5 Số 9 - Trang 693-702
A. J. Louli1, A. Eldesoky2, Rochelle Weber3, Matthew Genovese1, Matt Coon1, Jack deGooyer1, Zhe Deng4, Robin White5, Jaehan Lee5, Thomas Rodgers5, R. Petibon6, Sunny Hy6, Shawn J. H. Cheng6, J. R. Dahn2
1Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
2Department of Chemistry, Dalhousie University, Halifax, Nova Scotia Canada
3Department of Mechanical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
4Hua Zhong University of Science and Technology, Wuhan, China
5Carl Zeiss Microscopy, Pleasanton, CA, USA
6Tesla Canada R&D, Dartmouth, Nova Scotia, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kasliwal, A. et al. Role of flying cars in sustainable mobility. Nat. Commun. 10, 1555 (2019).

Holden, J. & Goel, N. Fast-forwarding to a Future of On-demand Urban Air Transportation (Uber Elevate, 2016); https://www.uber.com/elevate.pdf

Blomgren, G. E. The development and future of lithium ion batteries. J. Electrochem. Soc. 164, A5019–A5025 (2017).

Neudecker, B. J., Dudney, N. J. & Bates, J. B. ‘Lithium-free’ thin-film battery with in situ plated Li anode. J. Electrochem. Soc. 147, 517 (2000).

Qian, J. et al. Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 26, 7094–7102 (2016).

Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).

Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

Betz, J. et al. Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv. Energy Mater. 9, 1803170 (2018).

Abrha, L. H. et al. Li7La2.75Ca0.25Zr1.75Nb0.25O12@LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery. Electrochim. Acta 325, 134825 (2019).

Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiaded graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002).

Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).

Ding, F. et al. Effects of carbonate solvents and lithium salts on morphology and Coulombic efficiency of lithium electrode. J. Electrochem. Soc. 160, A1894–A1901 (2013).

Wood, K. N. et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2, 790–801 (2016).

López, C. M., Vaughey, J. T. & Dees, D. W. Morphological transitions on lithium metal anodes. J. Electrochem. Soc. 156, A726 (2009).

Rodriguez, R. et al. Separator-free and concentrated LiNO3 electrolyte cells enable uniform lithium electrodeposition. J. Mater. Chem. A https://doi.org/10.1039/c9ta10929c (2020).

Ren, X. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019).

Chen, S. et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1–7 (2018).

Wilkinson, D. P., Blom, H., Brandt, K. & Wainwright, D. Effects of physical constraints on Li cyclability. J. Power Sources 36, 517–527 (1991).

Louli, A. J. et al. Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells. J. Electrochem. Soc. 166, A1291–A1299 (2019).

Yin, X. et al. Insights into morphological evolution and cycling behaviour of lithium metal anode under mechanical pressure. Nano Energy 50, 659–664 (2018).

Niu, C. et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019).

Brandt, K. Historical development of secondary lithium batteries. Solid State Ion. 69, 173–183 (1994).

Zhang, H. et al. Ionic liquid electrolyte with highly concentrated LiTFSI for lithium metal batteries. Electrochim. Acta 285, 78–85 (2018).

Guo, Q. et al. Flame retardant and stable Li1.5Al0.5Ge1.5(PO4)3-supported ionic liquid gel polymer electrolytes for high safety rechargeable solid-state lithium metal batteries. J. Phys. Chem. C 122, 10334–10342 (2018).

von Saken, U., Nodwell, E., Sundher, A. & Dahn, J. R. Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. J. Power Sources 54, 240–245 (1995).

Zhou, Q. et al. A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries. Adv. Energy Mater. 10, 1–8 (2020).

Weber, R. et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4, 683–689 (2019).

Smith, A. J., Burns, J. C., Xiong, D. & Dahn, J. R. Interpreting high precision coulometry results on Li-ion cells. J. Electrochem. Soc. 158, A1136–A1142 (2011).

Nelson, K. J. et al. Studies of the effect of high voltage on the impedance and cycling performance of Li[Ni0.4Mn0.4Co0.2]O2/graphite lithium-ion pouch cells. J. Electrochem. Soc. 162, A1046–A1054 (2015).

Nelson, K. Studies of the Effects of High Voltage on the Performance and Impedance of Lithium-ion Batteries. PhD thesis, Dalhousie Univ. (2017).

Zhu, Y., Li, Y., Bettge, M. & Abraham, D. P. Positive electrode passivation by LiDFOB electrolyte additive in high-capacity lithium-ion cells. J. Electrochem. Soc. 159, A2109–A2117 (2012).

Cha, J., Han, J. G., Hwang, J., Cho, J. & Choi, N. S. Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries. J. Power Sources 357, 97–106 (2017).

Chen, X. et al. Reduction mechanism of fluoroethylene carbonate for stable solid-electrolyte interphase film on silicon anode. ChemSusChem 7, 549–554 (2014).

Streich, D. et al. Online electrochemical mass spectrometry of high energy lithium nickel cobalt manganese oxide/graphite half- and full-cells with ethylene carbonate and fluoroethylene carbonate based electrolytes. J. Electrochem. Soc. 163, A964–A970 (2016).

Nakai, H., Kubota, T., Kita, A. & Kawashima, A. Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes. J. Electrochem. Soc. 158, A798 (2011).

Schroder, K. et al. The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes. Chem. Mater. 27, 5531–5542 (2015).

Jung, R. et al. Consumption of fluoroethylene carbonate (FEC) on Si-C composite electrodes for Li-ion batteries. J. Electrochem. Soc. 163, A1705–A1716 (2016).

Petibon, R. et al. Studies of the capacity fade mechanisms of LiCoO2/Si-alloy:graphite cells. J. Electrochem. Soc. 163, A1146–A1156 (2016).

Xu, C. et al. Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive. Chem. Mater. 27, 2591–2599 (2015).

Parimalam, B. S. & Lucht, B. L. Reduction reactions of electrolyte salts for lithium ion batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI. J. Electrochem. Soc. 165, A251–A255 (2018).

Allen, J. L., Han, S. D., Boyle, P. D. & Henderson, W. A. Crystal structure and physical properties of lithium difluoro(oxalato) borate (LiDFOB or LiBF2Ox). J. Power Sources 196, 9737–9742 (2011).

Jurng, S., Brown, Z. L., Kim, J. & Lucht, B. L. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ. Sci. https://doi.org/10.1039/C8EE00364E (2018).

Bommier, C. et al. In operando acoustic detection of lithium metal plating in commercial LiCoO2/Graphite pouch cells. Cell Rep. Phys. Sci. https://doi.org/10.1016/j.xcrp.2020.100035 (2020).

Deng, Z. et al. Observation of the electrolyte wetting and ‘unwetting’ in Li-ion pouch cells via ultrasonic scanning technology. Joule https://doi.org/10.1016/j.joule.2020.07.014 (2020).

Hatchard, T. D., Trussler, S. & Dahn, J. R. Building a ‘smart nail’ for penetration tests on Li-ion cells. J. Power Sources 247, 821–823 (2014).

Genovese, M. et al. Hot formation for improved low temperature cycling of anode-free lithium metal batteries. J. Electrochem. Soc. 166, A3342–A3347 (2019).

Li, J. et al. Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells. J. Electrochem. Soc. 164, A1534–A1544 (2017).