Diabetic retinopathy classification based on multipath CNN and machine learning classifiers
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abramoff MD, Garvin MK, Sonka M (2010) Retinal imaging and image analysis. IEEE Rev Biomed Eng 3:169–208
Zachariah S, Wykes W, Yorston D (2015) Grading diabetic retinopathy (dr) using the Scottish grading protocol. Commun Eye Health 28:72–73
Cheung N, Jin Wang J, Klein R, Couper DJ, Richey Sharrett A, Wong TY (2007) Diabetic retinopathy and the risk of coronary heart disease. Diabetes Care 30(7):1742–1746
Pratt H, Coenen F, Broadbent DM, Harding SP, Zheng Y (2016) Convolutional neural networks for diabetic retinopathy. Proc Comput Sci 90:200–205 (20th Conference on Medical Image Understanding and Analysis (MIUA 2016))
Demir F, Sengur A, Bajaj V (2020) Convolutional neural networks based efficient approach for classification of lung diseases. Health Inf Sci Syst 8(1):4
Zhou L, Li Q, Huo G, Zhou Y (2017) Image classification using biomimetic pattern recognition with convolutional neural networks features. Comput Intell Neurosci 2017
James J, Sharifahmadian E, Shih L (2018) Automatic severity level classification of diabetic retinopathy. Int J Comput Appl 180:30–35
Yang Y, Li T, Li W, Wu H, Fan W, Zhang W (2017) Lesion detection and grading of diabetic retinopathy via two-stages deep convolutional neural networks. In: MICCAI
Paing MP, Choomchuay S, Rapeeporn Y (2016) Detection of lesions and classification of diabetic retinopathy using fundus images. In: 2016 9th biomedical engineering international conference (BMEiCON), pp 1–5
Prasad DK, Vibha L, Venugopal KR (2015) Early detection of diabetic retinopathy from digital retinal fundus images. In: 2015 IEEE Recent Advances in Intelligent Computational Systems (RAICS), pp 240–245
Andonová M, Pavlovičová J, Kajan S, Oravec M, Kurilová V (2017) Diabetic retinopathy screening based on cnn. In: 2017 International Symposium ELMAR, pp 51–54
Mookiah MRK, Rajendra Acharya U, Joy Martis R, Chua CK, Lim CM, Ng EYK, Laude A (2013) Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: A hybrid feature extraction approach. Knowl-Based Syst 39:9–22
Pao S-I, Lin H-Zin, Chien K-H, Tai M-C, Chen J-T, Lin G-M (2020) Detection of diabetic retinopathy using bichannel convolutional neural network. J Ophthalmol
Shahin EM, Taha TE, Al-Nuaimy W, El Rabaie S, Zahran OF, El-Samie FEA (2012) Automated detection of diabetic retinopathy in blurred digital fundus images. In: 2012 8th International Computer Engineering Conference (ICENCO), pp 20–25
Kanungo YS, Srinivasan B, Choudhary S (2017) Detecting diabetic retinopathy using deep learning. In: 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT), pp 801–804
Shanthi T, Sabeenian RS (2019) Modified alexnet architecture for classification of diabetic retinopathy images. Comput Electr Eng 76:56–64
de la Calleja J, Tecuapetla L, Auxilio Medina M, Bárcenas E, Urbina Nájera AB (2014) LBP and machine learning for diabetic retinopathy detection 8669:110–117
Gayathri S, Gopi Varun P, Palanisamy P (2020) Automated classification of diabetic retinopathy through reliable feature selection. Phys Eng Sci Med pp 1–19
Gayathri S, Krishna AK, Gopi VP, Palanisamy P (2020) Automated binary and multiclass classification of diabetic retinopathy using Haralick and multiresolution features. IEEE Access 8:57497–57504
Gayathri S, Gopi VP, Palanisamy P (2020) A lightweight CNN for diabetic retinopathy classification from fundus images. Biomed Signal Process Control 62:102115
Van Der Heijden AA, Abramoff MD, Verbraak F, van Hecke MV, Liem A, Nijpels G (2018) Validation of automated screening for referable diabetic retinopathy with the idx-dr device in the hoorn diabetes care system. Acta Ophthalmol 96(1):63–68
Shah A, Clarida W, Amelon R, Hernaez-Ortega MC, Navea A, Morales-Olivas J, Dolz-Marco R, Verbraak F, Jorda PP, van der Heijden Amber A, et al (2020) Validation of automated screening for referable diabetic retinopathy with an autonomous diagnostic artificial intelligence system in a Spanish population. J Diab Sci Technol 1932296820906212
Wang Y, Zhang H, Chae KJ, Choi Y, Jin GY, Ko S-B (2020) Novel convolutional neural network architecture for improved pulmonary nodule classification on computed tomography. Multidimensional Systems and Signal Processing 1–21
Wang X, Bao A, Cheng Y, Yu Q (2018) Multipath ensemble convolutional neural network. IEEE Trans Emerg Topics Comput Intell
Eladawi N, Elmogy M, Ghazal M, Fraiwan L, Aboelfetouh A, Riad A, Sandhu H, El-Baz A (2019) Diabetic retinopathy grading using 3d multi-path convolutional neural network based on fusing features from octa scans, demographic, and clinical biomarkers. In: 2019 IEEE International conference on imaging systems and techniques (IST), IEEE. pp 1–6
O’Shea K, Nash R (2015) An introduction to convolutional neural networks. ArXiv e-prints
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
Russakovsky O, Deng J, Hao S, Krause J, Satheesh S, Ma S et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vision 115(3):211–252
Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E (2018) Deep learning for computer vision: A brief review. Computational intelligence and neuroscience 2018
Nwankpa C, Ijomah W, Gachagan A, Marshall S (2018) Activation functions: Comparison of trends in practice and research for deep learning. arXiv:1811.03378
Tang Y (2013) Deep learning using linear support vector machines. arXiv preprint arXiv:1306.0239
Chollet François (2015) keras. https://github.com/fchollet/keras
Targ S, Almeida D, Lyman K (2016) Resnet in resnet: Generalizing residual architectures. arXiv:1603.08029
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. CoRR, arXiv:1409.1556
Pradeep KJ, Balamurali S, Kadry R, Lakshmana K (2019) Diagnosis of diabetic retinopathy using multi level set segmentation algorithm with feature extraction using svm with selective features. Multimedia Tools and Applications 1573–7721
Roychowdhury A, Banerjee S (2018) Random forests in the classification of diabetic retinopathy retinal images. In: Bhattacharyya S, Gandhi T, Sharma K, Dutta P (eds) Advanced Computational and Communication Paradigms, vol 475. Springer, Singapore, pp 168–176
Sharma S, Agrawal J, Sharma S (2013) Classification through machine learning technique: C4. 5 algorithm based on various entropies. Int J Comput Appl 82:28–32
Yadav S, Shukla S (2016) Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. In: 2016 IEEE 6th International Conference on Advanced Computing (IACC), pp 78–83
Visa S, Ramsay B, Ralescu A, Knaap E (2011) Confusion matrix-based feature selection. CEUR Workshop Proc 710:120–127
Porwal P, Pachade S, Kamble R, Kokare M, Deshmukh G, Sahasrabuddhe V, Meriaudeau F (2018) Indian diabetic retinopathy image dataset (IDRiD): A database for diabetic retinopathy screening research. Data 3:1–8
Kaggle and EyePacs (2015) Kaggle diabetic retinopathy detection
Decencière E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A, Charton B, Klein J-C (2014) Feedback on a publicly distributed database: the messidor database. Image Anal Stereol 33(3):231–234
McHugh M (2012) Interrater reliability: The kappa statistic. Biochemia medica: časopis Hrvatskoga društva medicinskih biokemičara / HDMB 22:276–82
Study of convolutional neural networks for early detection of diabetic retinopathy (2020)
Yang Y, Li T, Li W, Wu H, Fan W, Zhang W (2017) Lesion detection and grading of diabetic retinopathy via two-stages deep convolutional neural networks. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp 533–540
Zeng X, Chen H, Luo Y, Ye W (2019) Automated diabetic retinopathy detection based on binocular Siamese-like convolutional neural network. IEEE Access 7:30744–30753