Deviance residuals based PLS regression for censored data in high dimensional setting
Tài liệu tham khảo
Cox, 1972, Regression models and life tables, Journal of the Royal Statistical Society B, 74, 187
S. Wold, H. Martens, H. Wold, The multivariate calibration problem in chemistry solved by the PLS method. In Proc. Conf. Matrix Pencils, Ruhe A., Kåstrøm B. (Eds), March 1982, Lecture Notes in Mathematics, Springer Verlag, Heidelberg (1983) 286–293.
Tenenhaus, 1998
Garthwaite, 1994, An interpretation of partial least squares, Journal of the American Statistical Association, 89, 122, 10.2307/2291207
Tenenhaus, 1999, la regression logistique PLS in Proceedings of the 32èmes journées de Statistique de la Société française de Statistique, FES, 721
Wold, 1966, Estimation of principal components and related models by iterative least squares, 391
Esposito Vinzi, 2001, PLS logistic regression, 117
Bastien, 2001, PLS generalised linear regression, application to the analysis of life time data, 131
Bastien, 2005, PLS generalised linear regression, Computational Statistics & Data Analysis, 48, 17, 10.1016/j.csda.2004.02.005
Bastien, 2004, PLS–Cox model: application to gene expression data, 655
Tibshirani, 1997, The lasso method for variable selection in the Cox model, Statistics in Medicine, 16, 385, 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
Tibshirani, 1996, Regression shrinkage and selection via the Lasso, Journal of the Royal Statistical Society. Series B. Methodological, 58, 267
Efron, 2004, Least angle regression, Annals of Statistics, 32, 407, 10.1214/009053604000000067
Gui, 2005, Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with application to microarray gene expression data, Bioinformatics, 21, 3001, 10.1093/bioinformatics/bti422
Segal, 2006, Microarray gene expression data with linked survival phenotypes: diffuse large-B-cell lymphoma revisited, Biostatistics, 7, 268, 10.1093/biostatistics/kxj006
Rosenwald, 2002, The use of molecular profiling to predict survival for diffuse large-B-cell lymphoma, The New England Journal of Medicine, 346, 1937, 10.1056/NEJMoa012914
Collett, 1994
Li, 2003, Kernel Cox regression models for linking gene expression profiles to censored survival data, Pacific Symposium of Biocomputing, 8, 65
Therneau, 2000
Therneau, 1990, Martingale-based residuals for survival models, Biometrika, 77, 147, 10.1093/biomet/77.1.147
Hastie, 1990
J.H. Friedman, B.E. Popescu. Gradient directed regularization. Technical report, Standford University 2004.
De Jong, 1994, Comments on the PLS kernel algorithm, Journal of Chemometrics, 8, 169, 10.1002/cem.1180080208
S. Rännar, F. Lindgren, P. Geladi, S. Wold. A PLS kernel algorithm for data sets with many variables and fewer objects. Part I: Theory and Algorithm, Journal of Chemometrics, 8, 111–125.
Lindgren, 1993, The kernel algorithm for PLS, Journal of Chemometrics, 7, 45, 10.1002/cem.1180070104
Rosipal, 2001, Kernel partial least squares regression in reproducing kernel hilbert space, Journal of Machine Learning research, 2, 97
Bennett, 2003, An optimization perspective on kernel partial least squares regression, advances in learning theory: methods, models and applications, NATO Sciences Series III: Computer & Systems Sciences, 227
Tenenhaus, 2007, Kernel logistic PLS: a tool for supervised nonlinear dimensionality reduction and binary classification, Computational Statistic & Data Analysis, 51, 4083, 10.1016/j.csda.2007.01.004
Heagerty, 2003, Survival model predictive accuracy and ROC curves, 219
Barros, 2004, Principal components transform-partial least squares: a novel method to accelerate cross-validation in PLS regression, Chemometrics and Intelligent Laboratory Systems, 73, 245, 10.1016/j.chemolab.2004.03.007