Những phát triển trong siêu âm tim mạch: Phần 1: Xử lý tín hiệu và thiết bị

Medical & Biological Engineering & Computing - Tập 35 - Trang 561-569 - 1997
P. J. Fish1, P. R. Hoskins2, C. Moran2, W. N. McDicken2
1School of Electronic Engineering Science, University of Wales, Bangor, UK
2Department of Medical Physics and Medical Engineering, Royal Infirmary, Edinburgh, UK

Tóm tắt

Một trong những đóng góp chính cho sự cải thiện các thiết bị siêu âm Doppler quang phổ và màu là sự phát triển của các kỹ thuật xử lý tín hiệu tiên tiến, điều này trở nên khả thi nhờ vào sức mạnh tính toán ngày càng tăng. Các ước lượng quang phổ dựa trên mô hình hoặc tham số, các biến đổi theo thời gian-tần số, các thuật toán định trạng thái và các kỹ thuật sửa chữa chiều rộng quang phổ đã được nghiên cứu như những cải tiến có thể thực hiện cho các ước lượng dựa trên FFT hiện đang được sử dụng cho việc ước lượng quang phổ thời gian thực của các tín hiệu Doppler. Trong hình ảnh dòng màu, một số cải tiến về độ chính xác của ước lượng vận tốc đã đạt được nhờ vào việc sử dụng các thuật toán mới nhưng với chi phí là sự gia tăng độ phức tạp tính toán so với phương pháp tự tương quan thông thường. Các bộ lọc đa thức đã được chứng minh có một số lợi thế hơn các bộ lọc IIR trong việc triệt tiêu tiếng vang tĩnh. Nhiều phương pháp ước lượng vector vận tốc để khắc phục vấn đề phụ thuộc góc đã được nghiên cứu, bao gồm theo dõi đặc trưng 2D, phương pháp hai và ba chùm tia, và việc sử dụng chiều rộng quang phổ bên cạnh tần số trung bình. Việc thu thập và hiển thị dữ liệu 3D và hình ảnh sức mạnh Doppler cũng đã được nghiên cứu. Việc sử dụng hình ảnh hài, sử dụng hài số hai được tạo ra bởi các phương tiện tương phản bọt đúc, có vẻ hứa hẹn đặc biệt là cho việc hình ảnh dòng chậm. Việc thu thập dữ liệu hình ảnh song song sử dụng quét không theo trình tự hoặc truyền chùm rộng, tiếp theo là việc tiếp nhận đồng thời dọc theo một số chùm tia, đã được nghiên cứu để thúc đẩy hình ảnh 'thời gian thực'.

Từ khóa

#siêu âm tim mạch #xử lý tín hiệu #thiết bị siêu âm #quang phổ Doppler #hình ảnh dòng màu #ước lượng vận tốc #triệt tiêu tiếng vang #dữ liệu 3D #hình ảnh sức mạnh Doppler

Tài liệu tham khảo

Ahn, Y. B., andPark, S. B. (1991): ‘Estimation of main frequency and variance of ultrasonic Doppler signal by using second-order autoregressive model’,IEEE Trans.,UFFC-38, (3), pp. 172–182 Alam, S. K., andParker, K. J. (1996): ‘Reduction of computational complexity in the butterfly search technique’,IEEE Trans.,BME-43, pp. 723–733 Alam, S. K., andParker, K. J. (1995): ‘The Butterfly search technique for estimation of blood velocity’,Ultrasound Med. Biol.,21, pp. 657–670 Baek, K. R., Bae, M. H., andPark, S. B. (1989): ‘A new aliasing extension method for ultrasonic 2-dimension pulsed Doppler systems’,Ultrasonic Imag.,11, p. 233 Bashford, G. R., andVon Ramm, O. T. (1996): ‘Ultrasound three dimensional velocity measurements by feature tracking’,IEEE Trans.,UFFC-43, pp. 376–384 Bellis, S. J., Marnane, W., andFish, P. J. (1994): ‘Systolic arrays for modified covariance spectral estimation used with ultrasonic Doppler blood flow detectors’. Proc. 7th Eur. Sig. Proc. Conf., pp. 1361–1364 Bohs, L. N., Priemel, B. H., andTrahey, G. E. (1995): ‘Experimental velocity profiles and volumetric flow via two-dimensional speckle tracking’,Ultrasound Med. Biol.,21, pp. 885–898 Bohs, L. N., andTrahey, G. E. (1991): ‘A novel method for angle independent ultrasonic imaging of blood flow and tissue motion’,IEEE Trans.,BME-38, (3), pp. 280–286 Bohs, L. N., Friemel, B. H., McDermott, B. A., andTrahey, G. E. (1993): ‘A real time system for quantifying and displaying two-dimensional velocities using ultrasound’,Ultrasound Med. Biol.,19, (9), pp. 751–761 Bonnefous, O. (1988): ‘Measurement of the complete (3D) velocity vector of blood flows’, Proc. IEEE Ultrasonics Symp., pp. 795–799 Bonnefous, O. (1992): ‘Time domain color flow imaging: methods and benefits compared to Doppler’,Acoustical Imaging,19, pp. 301–309 Bonnefous, O., andPesque, P. (1986): ‘Time domain formulation of pulse-Doppler ultrasound and blood velocity estimation by cross correlation’,Ultrasonic Imag.,8, pp. 73–85 Bonnefous, O, Pesque, P., andBernard, X. (1986): ‘A new velocity estimator for colour flow mapping’, IEEE Ultrasonics Symp., vol. 1, pp. 855–860 Brands, P. J., andHoeks, P. G. (1992): ‘A comparison method for mean frequency estimators for Doppler ultrasound’,Ultrasonic Imag.,14, pp. 367–386 Brands, P. J., Hoeks, A. P. G., andReneman, R. S. (1995b): ‘The effect of echo suppression on the mean velocity estimation range of the RF cross-correlation model estimator’,Ultrasound Med. Biol.,21, pp. 945–960 Brands, P. J., Hoeks, A. P. G., Hofstra, L., andReneman, R. S. (1995a): ‘A non-invasive method to estimate wall shear rate using ultrasound’,Ultrasound Med. Biol.,21, pp. 171–185 Burns, P. N., Powers, J. E., Simpson, D. H., Brezina, A., Kolin, A., Chin, C. T., Uhlendorf, V., andFritzsch, T. (1994): ‘Harmonic power mode Doppler using microbubble contrast agents: an improved method for small vessel flow imaging’. Proc. IEEE Ultrasonics Symp., pp. 1547–1550 Cardoso, J. C., Ruano, M. G., andFish, P. J. (1996) ‘Nonstationary broadening reduction in pulsed Doppler spectrum measurements using time-frequency estimators’,IEEE Trans.,BME-43, pp. 1–11. Chang, P. H., Shung, K. K., Wu, S., andLevene, H. B. (1995): ‘Second harmonic imaging and harmonic doppler measurements with Albunex’,IEEE Trans.,UFFC-42, pp. 1020–1027 Cohen, L. (1989): ‘Time-frequency distributions a review’,Proc. IEEE,77, pp. 941–981 Collaris, R. J., andHoeks, A. P. G. (1994): ‘Postprocessing of velocity distributions in real-time ultrasonic color velocity imaging’,Ultrasonic Imag.,16, pp. 249–264 David, J.-Y., Jones, S. A., andGiddens, D. P. (1991): ‘Modern spectral analysis techniques for blood flow velocity and spectral measurements with pulsed Doppler ultrasound’,IEEE Trans.,BME-38, (6), pp. 589–596 De Jong, P. G. M., Arts, T., Hoeks, A. P. G. andReneman, R. S. (1990): ‘Determination of tissue motion velocity by correlation interpolation of pulsed ultrasonic signals’,Ultrasonic Imag.,12, pp. 84–98 De Jong, P. G. M., Arts, T., Hoeks, A. P. G., andReneman, R. S. (1991): ‘Experimental evaluation of the correlation interpolation technique to measure regional tissue velocity’,Ultrasonic Imag.,13, pp. 145–161 Eembree, P. M., andO’Brien, W. D. (1985): ‘The accurate ultrasonic measurement of the volume flow of blood by time domain correlation’, IEEE Ultrasonics Symp., vol. 1, pp. 963–966 Evans, D. H. (1993): ‘Techniques for color-flow imaging’,in Wells, P. N. T. (Ed.): ‘Advances in ultrasound techniques and instrumentation’ (Churchill Livingstone, New York) pp. 87–107 Evans, D. H., McDicken, W. N., Skidmore, R. andWoodcock, J. P. (1989): ‘Doppler ultrasound: physics, instrumentation and clinical applications’ (J. Wiley, Chichester, UK) Fan, L., andEvans, D. H. (1994a): ‘Differences in the power structure of Fourier transform and autoregressive spectral estimates of narrow-band Doppler signals’,IEEE Trans.,BME-41, (4), pp. 387–390 Fan, L., andEvans, D. H. (1994b): ‘Extracting instantaneous and frequency information from Doppler signals using the Wigner distribution function’,Ultrasound Med. Biol.,20, (5), pp. 429–443 Fan, L., andEvans, D. H. (1994c): ‘A real-time and fine resolution analyser used to estimate the instantaneous energy distribution of Doppler signals’,Ultrasound Med. Biol.,20, (5), pp. 445–454 Fan, P. H., Czuwala, P. J., Nanda, N. C., Rosenthal, S. M., andYoganathan, A. (1993): ‘Comparison of various agents in contrast enhancement of color Doppler flow images: an in vitro study’,Ultrasound Med. Biol.,19 (1), pp. 45–57 Fehr, R., Dousse, B., andGrossniklaus, B. (1991): ‘New advances in color mapping: quantitative velocity measurement beyond the Nyquist limit’,Brit. J. Radiol,64, p. 651 Fei, D.-Y., Fu, C.-T., Brewer, W.H., andKraft, K.A. (1994): ‘Angle independent Doppler color imaging: determination of accuracy and a method of display’,Ultrasound Med. Biol.,20, (2), pp. 147–155 Ferrara, K. W., andAlgazi, V. R. (1991a): ‘A new wide-band spread target maximum likelihood estimator for blood velocity estimation—Part 1: theory’,IEEE Trans.,UFFC-38, pp. 1–16 Ferrara, K. W., andAlgazi, V. R. (1991b): ‘A new wideband spread target maximum likelihood estimator for blood velocity estimatin—Part II: evaluation of estimators with experimental data’,ibid.,,UFFC-38, pp. 17–26 Ferrara, K. W., andAlgazi, V. R. (1992): ‘Comparison of estimation strategies for color flow mapping’,Acoustical Imaging,19, pp. 317–322 Ferrara, K. W., Zagar, B., Sokil-Melgar, J., andAlgazi, R. (1996): ‘High resolution 3D color flow mapping applied to the assessment of breast vasculature’,Ultrasound Med. Biol.,22, pp. 293–304 Ferrara, K., Algazi, V. R., Darroch, T., andRaghavendra, P. (1993): ‘Evaluation of the performance of strategies for the estimation of low velocity blood flow’, Proc. IEEE Ultrasonics Symp., pp. 1049–1053 Fish, P. J. (1991): ‘Nonstationarity broadening in pulsed Doppler spectrum measurements’,Ultrasound Med. Biol.,17, (2), pp. 147–155 Fish, P. J. (1992): ‘The Doppler effect and blood flow:an instrument optimisation programme’,in Povey, M. J. W., andMcClements, D. J. (Eds.): ‘Developments in acoustics & ultrasonics’ (Institute of Physics Publishing, Bristol, UK) pp. 91–128 Fort, A., Manfredi, C., andRocchi, S. (1995): ‘Adaptive SVD-based AR model order determination for time-frequency analysis of doppler ultrasound signals’,Ultrasound Med. Biol.,21, pp. 793–806 Foster, S. G., Eembree, P. M., andO’Brien, W. D. (1990): ‘Flow velocity profile via time-domain correlation: error analysis and computer simulation’,IEEE Trans.,UFFC-37, p. 162 Friemel, B. H., Nightingale, K. R., Bohs, L. N., andTrahey, G. E. (1993): ‘Wall filtering challenges in two-dimensional vector velocity estimation’. Proc. IEEE Ultrasonics Symp., pp. 1031–1034 Giarré, M., Dousse, B., andMeister, J. J. (1996): ‘Velocity vector reconstruction for color flow Doppler: experimental evaluation of a new geometric method’,Ultrasound Med. Biol.,22, pp. 75–88 Goldberg, B. B., Liu, J.-B., andForsberg, F. (1994): ‘Ultrasound contrast agents: a review’,Ultrasound Med. Biol.,20, (4), pp. 319–333 Guo, Z., Moreau, M., Rickey, D. W., Picot, P. A., andFenster, A. (1995): ‘Quantitative investigation of in vitro flow using three-dimensional colour doppler ultrasound’,Ultrasound Med. Biol.,21, pp. 807–816 Guo, Z., Durand, L.-G., andLee, H. C. (1994): ‘Comparison of time-frequency distribution techniques for analysis of simulated Doppler ultrasound signals of the femoral artery’,IEEE Trans.,BME-41, (4), pp. 332–342 Guo, Z., Durand, L.-G., Allard, L., Cloutier, G., Lee, H. C. andLanglois, Y. E. (1993): ‘Cardiac Doppler blood-flow signal analysis. Part 2 Time/frequency representation based on autoregressive modelling’,Med. Biol. Eng. Comput.,31, (3), pp. 242–248 Hein, I. A. (1993): ‘Multi-directional ultrasonic blood flow measurement with a triple beam lens’. Proc. IEEE Ultrasonics Symp., pp. 1065–1069 Hein, I. A., andO’Brein, W. D. (1993a): ‘A real-time ultrasound time-domain correlation blood flowmeter, part II: performance and experimental verification’,IEEE Trans UFFC-40, pp. 776–785 Hein, I. A., Chen, J. T., Jenkins, W. K., andO’Brein, W. D. (1993): ‘A real-time ultrasound time-domain correlation blood flowmeter, part I: theory and design’,ibid.,,UFFC-40, pp. 768–775 Hein, I. A., andO’Brien, Jr., W. D. (1993b): ‘Current time-domain methods for assessing tissue motion by analysis from reflected ultrasound echoes—a review’,ibid.,,UFFC-40, (2), pp. 84–102 Herment, A., andDumer, P. (1994): ‘Comparison of blood flow imaging methods’,Eur. J. Ultrasound,1, pp. 345–353 Herment, A., andGiovannelli, J. F. (1995): ‘An adaptive approach to computing the spectrum and mean frequency of doppler signals’,Ultrasonic Imag.,17, pp. 1–26 Herment, A., Demoment, G., Dumee, P., Guglielmi, J. P., andDelouche, A. (1993): ‘A new adaptive mean frequency estimator: application to constant variance color flow mapping’,IEEE Trans.,UFFC-40, pp. 796–804 Herment, A., andGuglielmi, J. P. (1994): ‘Principles of colour imaging of blood flow’,Eur. J. Ultrasound,1 (2), pp. 197–204 Hoeks, A. P. G., Arts, T. G. J., Brands, P. J., andReneman, R. S. (1993): ‘Comparison of the performance of the RF cross correlation and Doppler autocorrelation technique to estimate the mean velocity of simulated ultrasound signals’,Ultrasound Med. Biol.,19, (9), pp. 727–740 Hoeks, A. P. G., Van de Vorst, J. J. W., Dabekaussen, A., Brands, P. J. andReneman, R. S. (1991): ‘An efficient algorithm to remove low frequency Doppler signals in digital Doppler systems’,Ultrasonic Imag.,13, pp. 135–144 Hoskins, P. R., Fleming, A., Stonebridge, P., Allan, P. L., andCameron, D. (1994): ‘Scan-plane vector maps and secondary flow motions in arteries’,Eur. J. Ultrasound,1, (2), pp. 159–169 Houi, K., Mochio, S., Isogai, Y., Miyamoto, Y., andSuzuki, N. (1990): ‘Comparison of color flow and 3D image by computer graphics for the evaluation of carotid disease’,Angiol.,41, pp. 305–312 Jensen, J. A. (1993a): ‘Implementation of ultrasound time-domain cross-corelation blood velicity estimators’,IEEE Trans.,BME-40, pp. 468–474 Jensen, J. A. (1993b): ‘Range/velocity limitations for time-domain blood velocity estimation’,Ultrasound Med. Biol.,19, pp. 741–749 Jensen, J. A. (1996): ‘Estimation of blood velocities using ultrasound’ (Cambridge University Press, Cambridge, UK) Kadi, A. P., andLoupas, T. (1995): ‘On the performance of regression and step-initialized IIR clutter filters for color Doppler systems in diagnostic medical ultrasound’,IEEE Trans.,UFFC-42, pp. 927–937 Kaluzynski, K. (1987): ‘Analysis of application possibilities of autoregressive modelling to doppler blood flow signal spectral analysis’,Med. Biol. Eng. Comput.,25, pp. 373–376 Kaluzynski, K. (1989): ‘Order selection in Doppler blood flow signal spectral analysis using autoregressive modelling’,ibid.,,27, pp. 88–92 Kasai, C., Namekawa, K., Koyano, A., andOmoto, R. (1985): ‘Real-time two dimensional blood flow imaging using an auto-correlation technique’,IEEE Trans.,SU-32, (3), pp. 458–463 Kerr, A. T., andHunt, J. W. (1992a): ‘A method for computer simulation of ultrasound Doppler color flow images—I. Theory and numerical method’,Ultrasound Med. Biol.,18, (10), pp. 861–872 Kerr, A. T., andHunt, J. W. (1992b): ‘A method for computer simulation of ultrasound Doppler color flow images— II. Simulation results’,ibid.,,18, (10), pp. 873–879 Loupas, T., andMcDicken, W. N. (1990): ‘Low-order complex AR models for mean and maximum frequency estimation in the context of Doppler color flow mapping’,IEEE Trans.,UFFC-37, pp. 590–601 Loupas, T., Peterson, R. B., andGill, R. W. (1995a): ‘Experimental evaluation of velocity and power estimation for ultrasound blood flow imaging by means of a two-dimensional autocorrelation approach’,ibid.,,UFFC-42, pp. 689–699 Loupas, T., Powers, J. T., andGill, R. W. (1995b): ‘An axial velocity estimator for ultrasound blood flow imaging based on a full evaluation of the Doppler equation by means of a two-dimensional autocorrelation approach’,ibid.,,UFFC-42, pp. 672–688 Magnin, P. A. (1987): ‘A review of Doppler flow mapping techniques’, IEEE Ultrasonics Symp., vol. 1, pp. 969–977 Maniatis, T. A., Cobbold, R. S. C., andJohnston K. W. (1994a): ‘Two-dimensional velocity reconstruction strategies for color flow Doppler ultrasound images’,Ultrasound Med. Biol.,20, (2), pp. 137–145 Maniatis, T. A., Cobbold, R. S. C., andJohnston, K. W. (1994b): ‘Flow imaging in an end-to-side anastomosis model using two-dimensional velocity vectors’,ibid.,20, (6), pp. 559–569 McArdle, A., Newhouse, V. L., andBeach, K. W. (1995): ‘Demonstration of three-dimensional vector flow estimation using bandwidth and two transducers on a flow phantom’,ibid.,,21, pp. 679–698 Newhouse, V. L., Dickerson, K. S., Cathignol, D., andChapelon, J.-Y. (1994): ‘Three-dimensional vector flow estimation using two transducers and spectral width’,IEEE Trans.,UFFC-41 (1), pp. 90–95 Nowicki, A., Reid, J., Pedersen, P. C., Schmidt, A. W., andOung, H. (1990): ‘On the behavior of instantaneous frequency estimators implemented on Doppler flow images’,Ultrasound Med. Biol.,16 (5), pp. 511–518 Peterson, R. B., Atlas, L. E., andBeach, K. W. (1994): ‘A comparison of IIR initialisation techniques for improved color Doppler wall filter performance’. Proc. IEEE Ultrasonics Symp., pp. 1705–1708 Peterson, R. B., andPowers, J. E. (1993): ‘Ultrasonic Doppler flow measurement system with tissue motion discrimination’. US Patent 5197477 Phillips, P. J., Kadi, A. P., andVon Ramm, O. T. (1995): ‘Feasibility study for a two-dimensional diagnostic ultrasound mapping system’,Ultrasound Med. Biol.,21, pp. 217–229 Picot, P. A., Rickey, D. W., Mitchell, R., Rankin, R. N., andFenster, A. (1993): ‘Three-dimensional colour Doppler imaging’,Ultrasound Med. Biol.,19, (2), pp. 95–104 Rajaonah, J.-C., Dousse, B., andMeister, J.-J. (1994): ‘Compensation of the bias caused by the wall filter on the mean Doppler frequency’,IEEE Trans.,UFFC-41, (6), pp. 812–819 Ritchie, C. J., Edwards, W. S., Mack, L. A., Cyr, D. R., andKim, Y. (1996): ‘Three-dimensional ultrasonic angiography using power-mode Doppler’,Ultrasound Med. Biol.,22, pp. 277–286 Ruano, G. M., andFish, P. J. (1993): ‘Cost/benefit criterion for selection of pulsed Doppler ultrasound spectral mean frequency and bandwidth estimators’,IEEE Trans.,BME-40, (12), pp. 1338–1341 Ruano, M. G., Nocetti, D. F. G., Fish, P. J., andFlemming, P. J. (1993): ‘Alternative parallel implementations of an AR-modified covariance spectral estimator for diagnostic ultrasonic blood flow studies’,Parallel Comp., 19, pp. 463–476 Rubin, J. M., Bude, R. O., Carson, P. L., Bree, R. L., andAdler, R. S. (1994): ‘Power Doppler US: a potentially useful alternative to mean frequency based color Doppler US’,Radiol.,190, pp. 853–856 Schlindwein, F. S., andEvans, D. H. (1989): ‘A real-time autoregressive spectrum analyzer for Doppler ultrasound signals’,Ultrasound Med. Biol.,15, (3), pp. 263–272 Schlindwein, F. S., andEvans, D. H. (1990): ‘Selection in the order of autoregressive models for spectral analysis of Doppler ultrasound signals’,Ultrasound Med. Biol.,16, (1), pp. 81–91 Shariati, M. A., Dripps J. H., andMcDicken, W. N. (1993a): ‘A comparison of colour flow imaging algorithms’,Phys. Med. Biol.,38, pp. 1589–1600 Shariati, M. A., Dripps, J. H., andMcDicken, W. N. (1993b): ‘Deadbeat IIR MTI filtering for colour flow imaging systems’.Proc. IEEE Ultrasonics Symp., pp. 1059–1063 Tamura, T., Cobbold, R. S. C., andJohnston, K. W. (1990): ‘Determination of 2-D velocity vectors using color Doppler ultrasound’,ibid.,, vol. 3, pp. 1537–1540 Torp, H., Kristoffersen, K., andAngelsen, B. A. J. (1994): ‘Autocorrelation techniques in color flow imaging: signal model and statistical properties of the autocorelation estimates’,IEEE Trans.,UFFC-41, pp. 604–612 Torp, H., Lai, X. M., andKristoffersen, K. (1993): ‘Comparison between cross-corelation and auto-correlation technique in color flow imaging’. Proc. IEEE Ultrasonics Symp., pp. 1039–1042 Torp, H., Kristoffersen, K., andAngelsen, B. A. J. (1995): ‘On the joint probability density function for the autocorrelation estimates in ultrasound color flow imaging’,IEEE Trans.,UFFC-42, pp. 899–906 Tortoli, P., Guidi, G., Guidi, F., andAtzeni, C. (1994): ‘A review of experimental transverse Doppler studies’,ibid.,,UFFC-41, (1), pp. 84–89 Trahey, G. E., Allison, J. W., andVon Ramm, O. T. (1987): ‘Angle independent ultrasonic detection of blood flow’,ibid.,,BME-34, pp. 965–967 Trahey, G. E., Hubbard, S. M., andVon Ramm, O. T. (1988): ‘Angle independent ultrasonic blood flow detection by frame-to-frame correlation of B-mode images’,Ultrasonics,26, pp. 271–276 Vaitkus, P. J., andCobbold, R. S. C. (1988): ‘A comparative study and assessment of Doppler ultrasound spectral estimation techniques Part I: Estimation methods’,Ultrasound Med. Biol.,14, (8), pp. 661–672 Vaitkus, P. J., Cobbold, R. S. C., andJohnston, K. W. (1988): ‘A comparative study and assessment of Doppler ultrasound spectral estimation techniques Part II: Methods and results’,Ultrasound Med. Biol.,14, (8), pp. 673–688 Van Leeuwen, G. H., Hoeks, A. P. G. andReneman, R. S. (1986): ‘Simulation of real-time frequency estimators for pulsed Doppler systems’,Ultrasonic Imag.,8, pp. 252–271 Von Ramm, O. T., Smith, S. W., andPavy, H. G. (1991): ‘High-speed ultrasound volumetric imaging system— part II: parallel processing and image display’,IEEE Trans.,UFFC-38, pp. 109–115 Walker, W. F., andTrahey, G. E. (1994): ‘A fundamental limit on the performance of correlation based phase correction and flow estimation techniques’,IEEE Trans.,UFFC-41, pp. 644–654 Wang, Y., andFish, P. J. (1996a): ‘Comparison of Doppler signal analysis techniques for velocity waveform, turbulence and vortex measurement: a simulation study’,Ultrasound Med. Biol.,22, pp. 635–649 Wang, Y., andFish, P. J. (1997): ‘Correction for non-stationary and window broadening in Doppler spectrum estimation’,IEEE Sig. Proc. Lett.,4, pp. 18–20 Wells, P. N. T. (1994): ‘Ultrasonic colour flow imaging,’Phys. Med. Biol.,39, pp. 2113–2145 Willemetz, J. C., Nowicki, A., Meister, J. J., De Palma, F., andPante, G. (1989): ‘Bias and variance in the estimate of the Doppler frequency induced by a wall motion filter’,Ultrasonic Imag.,11, pp. 215–225 Ziera, A., Zeira, E. M., andHolland, S. C. (1994): ‘Comparison of time-frequency distribution techniques for analysis of simulated Doppler ultrasound signals of the femoral artery’,IEEE Trans.,UFFC-41, pp. 346–352