Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering

Biotechnology Advances - Tập 30 - Trang 1207-1218 - 2012
Tomohisa Hasunuma1, Akihiko Kondo2
1Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
2Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan

Tài liệu tham khảo

Allen, 2010, Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae, Biotechnol Biofuel, 3, 2, 10.1186/1754-6834-3-2 Almeida, 2007, Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae, J Chem Technol Biotechnol, 82, 340, 10.1002/jctb.1676 Almeida, 2008, NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae, Appl Microbiol Biotechnol, 78, 939, 10.1007/s00253-008-1364-y Almeida, 2009, Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction, Appl Microbiol Biotechnol, 84, 751, 10.1007/s00253-009-2053-1 Alvira, 2010, Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review, Bioresour Technol, 101, 4851, 10.1016/j.biortech.2009.11.093 Anasontzis, 2011, Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics, J Biotechnol, 152, 16, 10.1016/j.jbiotec.2011.01.002 Apiwatanapiwat, 2011, Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase, Appl Microbiol Biotechnol, 90, 377, 10.1007/s00253-011-3115-8 Banerjee, 1981, Inhibition of glycolysis by furfural in Saccharomyces cerevisiae, Appl Microbiol Biotechnol, 11, 226, 10.1007/BF00505872 Basso, 2008, Yeast selection for fuel ethanol production in Brazil, FEMS Yeast Res, 8, 1155, 10.1111/j.1567-1364.2008.00428.x Biely, 1985, Microbial xylanolytic systems, Trends Biotechnol, 3, 286, 10.1016/0167-7799(85)90004-6 Cantarella, 2004, Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF, Process Biochem, 39, 1533, 10.1016/S0032-9592(03)00285-1 Cardona, 2007, Fuel ethanol production: process design trends and integration opportunities, Bioresour Technol, 98, 2415, 10.1016/j.biortech.2007.01.002 Carmelo, 1997, Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae, Biochim Biophys Acta, 1325, 63, 10.1016/S0005-2736(96)00245-3 da Costa Sousa, 2009, Cradle-to-grave assessment of existing lignocellulose pretreatment technologies, Curr Opin Biotechnol, 20, 339, 10.1016/j.copbio.2009.05.003 De Vries, 2000, Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides, Carbohydr Res, 327, 401, 10.1016/S0008-6215(00)00066-5 Demain, 2005, Cellulase, Clostridia, and ethanol, Microbiol Mol Biol Rev, 69, 124, 10.1128/MMBR.69.1.124-154.2005 den Haan, 2001, Differential expression of the Trichoderma reesei β-xylanase II (xyn2) gene in the xylose-fermenting yeast Pichia stipitis, Appl Microbiol Biotechnol, 57, 521, 10.1007/s002530100790 den Haan, 2003, Enhanced xylan degradation and utilisation by Pichia stipitis overproducing fungal xylanolytic enzymes, Enzyme Microb Technol, 33, 620, 10.1016/S0141-0229(03)00183-2 den Haan, 2007, Functional expression of cellobiohydrolyases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol, Enzyme Microb Technol, 40, 1291, 10.1016/j.enzmictec.2006.09.022 den Haan, 2007, Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae, Metab Eng, 9, 87, 10.1016/j.ymben.2006.08.005 Desvaux, 2005, Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia, FEMS Microbiol Rev, 29, 741, 10.1016/j.femsre.2004.11.003 Doi, 2001, The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity, Chem Rec, 1, 24, 10.1002/1528-0691(2001)1:1<24::AID-TCR5>3.0.CO;2-W Elkins, 2010, Engineered microbial systems for enhanced conversion of lignocellulosic biomass, Curr Opin Biotechnol, 21, 657, 10.1016/j.copbio.2010.05.008 Fernandes, 2005, Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1P-regulated genes, Biochem Biophys Res Commun, 337, 95, 10.1016/j.bbrc.2005.09.010 Fierobe, 2005, Action of designer cellulosomes on homogeneous versus complex substrates, J Biol Chem, 280, 16325, 10.1074/jbc.M414449200 Fujita, 2002, Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes, Appl Environ Microbiol, 68, 5136, 10.1128/AEM.68.10.5136-5141.2002 Fujita, 2004, Synergistic saccharification, and direct fermentation to ethanol of amorphous cellulose by use of engineered yeast strain codisplaying three types of cellulolytic enzyme, Appl Environ Microbiol, 70, 1207, 10.1128/AEM.70.2.1207-1212.2004 Galazka, 2010, Cellodextrin transport in yeast for improved biofuel production, Science, 330, 84, 10.1126/science.1192838 Gírio, 2010, Hemicelluloses for fuel ethanol: a review, Bioresour Technol, 101, 4775, 10.1016/j.biortech.2010.01.088 Gnansounou, 2008, Fuel ethanol, 57 Gong, 1981, Direct fermentation of cellulose to ethanol by a cellulolytic filamentous fungus, Monilla sp, Biotechnol Lett, 3, 77, 10.1007/BF00145114 Gorsich, 2006, Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae, Appl Microbiol Biotechnol, 71, 339, 10.1007/s00253-005-0142-3 Grabber, 2005, How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies, Crop Sci, 45, 820, 10.2135/cropsci2004.0191 Guldfeldt, 1998, Measurement of the effects of acetic acid and extracellular pH on intracellular pH of nonfermenting, individual Saccharomyces cerevisiae cells by fluorescence microscopy, Appl Environ Microbiol, 64, 530, 10.1128/AEM.64.2.530-534.1998 Hahn-Hägerdal, 2007, Metabolic engineering for pentose utilization in Saccharomyces cerevisiae, Adv Biochem Eng Biotechnol, 108, 147 Hasunuma, 2011, Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae, Microb Cell Fact, 10, 2, 10.1186/1475-2859-10-2 Hasunuma, 2011, Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae, Appl Microbiol Biotechnol, 90, 997, 10.1007/s00253-011-3085-x Heer, 2009, Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxidoreductase, Appl Environ Microbiol, 75, 7631, 10.1128/AEM.01649-09 Heipieper, 1994, Mechanism of resistance of whole cells to toxic organic solvents, Trends Biotechnol, 12, 409, 10.1016/0167-7799(94)90029-9 Hendriks, 2009, Pretreatment to enhance the digestability of lignocellulosic biomass, Bioresour Technol, 100, 10, 10.1016/j.biortech.2008.05.027 Herrmann, 1997, The β-D-xylosidase of Trichoderma reesei is a multifunctional β-D-xylan xylohydrolase, Biochem J, 321, 375, 10.1042/bj3210375 Himmel, 2007, Biomass recalcitrance: engineering plants and enzymes for biofuels production, Science, 315, 804, 10.1126/science.1137016 Himmel, 2010, Microbial enzyme systems for biomass conversion: emerging paradigms, Biofuels, 1, 323, 10.4155/bfs.09.25 Hong, 2007, Construction of thermotolerant yeast expressing thermostable cellulase genes, J Biotechnol, 130, 114, 10.1016/j.jbiotec.2007.03.008 Ito, 2009, Regulation of the display ratio of enzymes on the Sacchromyces cerevisiae cell surface by the immunoglobulin G and cellulosomal enzyme binding domains, Appl Environ Microbiol, 75, 4149, 10.1128/AEM.00318-09 Jeffries, 1983, Utilization of xylose by bacteria, yeasts, and fungi, Adv Biochem Eng, 27, 1 Jeon, 2009, Cellulosic alcoholic fermentation using recombinant Saccharomyces cerevisiae engineered for the production of Clostridium cellulovorans endoglucanase and Saccharomycopsis fibuligera β-glucosidase, FEMS Microbiol Lett, 301, 130, 10.1111/j.1574-6968.2009.01808.x Jin, 2011, Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production, Biotechnol Bioeng, 108, 1290, 10.1002/bit.23059 Karhumaa, 2007, Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae, Microb Cell Fact, 6, 5, 10.1186/1475-2859-6-5 Katahira, 2004, Construction of a xylan fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose utilizing Saccharomyces cerevisiae cells, Appl Environ Microbiol, 70, 5407, 10.1128/AEM.70.9.5407-5414.2004 Katahira, 2006, Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain, Appl Microbiol Biotechnol, 72, 1136, 10.1007/s00253-006-0402-x Khan, 1994, Inactivation and repair of bacteriophage lambda by furfural, Biochem Mol Biol Int, 32, 379 Kitamoto, 1999, Sequence analysis, overexpression, and antisense inhibition of a β-xylosidase gene, xylA, from Aspergillus oryzae KBN616, Appl Environ Microbiol, 65, 20, 10.1128/AEM.65.1.20-24.1999 Klinke, 2003, Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast, Biotechnol Bioeng, 81, 738, 10.1002/bit.10523 Klinke, 2004, Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass, Appl Microbiol Biotechnol, 66, 10, 10.1007/s00253-004-1642-2 Kondo, 2004, Yeast cell-surface display-application of molecular display, Appl Microbiol Biotechnol, 64, 28, 10.1007/s00253-003-1492-3 Kondo, 2002, High level production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell surface glucoamylase, Appl Microbiol Biotechnol, 58, 291, 10.1007/s00253-001-0900-9 Kotaka, 2008, Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase, J Biosci Bioeng, 105, 622, 10.1263/jbb.105.622 Kulkarni, 1999, Molecular and biotechnological aspects of xylanases, FEMS Microbiol Rev, 23, 411, 10.1111/j.1574-6976.1999.tb00407.x la Grange, 1996, Expression of a Trichoderma reesei β-xylanase gene (XYN2) in Saccharomyces cerevisiae, Appl Environ Microbiol, 62, 1036, 10.1128/aem.62.3.1036-1044.1996 la Grange, 1997, Cloning of the Bacillus pumilus β-xylosidase gene (xynB) and its expression in Saccharomyces cerevisiae, Appl Microbiol Biotechnol, 47, 262, 10.1007/s002530050924 la Grange, 2001, Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger β-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes, Appl Environ Microbiol, 67, 5512, 10.1128/AEM.67.12.5512-5519.2001 la Grange, 2010, Engineering cellulolytic ability into bioprocessing organisms, Appl Microbiol Biotechnol, 87, 1195, 10.1007/s00253-010-2660-x Laadan, 2008, Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae, Yeast, 25, 191, 10.1002/yea.1578 Larsson, 1999, Comparison of different methods for the detoxification of lignocellulose hydrolysates of spruce, Appl Biochem Biotechnol, 77, 91, 10.1385/ABAB:77:1-3:91 Larsson, 2000, Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae, Appl Biochem Biotechnol, 84–86, 617, 10.1385/ABAB:84-86:1-9:617 Larsson, 2001, Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase, Appl Environ Microbiol, 67, 1163, 10.1128/AEM.67.3.1163-1170.2001 Larsson, 2001, Effect of overexpression of Saccharomyces cerevisiae Pad1p on the resistance to phenylacrylic acids and lignocellulose hydrolysates under aerobic and oxygen-limited conditions, Appl Microbiol Biotechnol, 57, 167, 10.1007/s002530100742 Lau, 2010, Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A (LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production, Biotechnol Biofuels, 3, 11, 10.1186/1754-6834-3-11 Li, 1996, Expression of Aureobasidium pullulans xynA in, and secretion of the xylanase from, Saccharomyces cerevisiae, Appl Environ Microbiol, 62, 209, 10.1128/aem.62.1.209-213.1996 Li, 2010, Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae, Appl Microbiol Biotechnol, 86, 1915, 10.1007/s00253-010-2518-2 Lilly, 2009, Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae, FEMS Yeast Res, 9, 1236, 10.1111/j.1567-1364.2009.00564.x Lin, 2009, Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, lignocellulosic inhibitory compound, Appl Environ Microbiol, 75, 3765, 10.1128/AEM.02594-08 Linger, 2010, Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis, Appl Environ Microbiol, 76, 6360, 10.1128/AEM.00230-10 Liu, 2006, Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors, Appl Microbiol Biotechnol, 73, 27, 10.1007/s00253-006-0567-3 Liu, 2011, Molecular mechanism of yeast tolerance and in situ detoxification of lignocellulosic hydrolysates, Appl Microbiol Biotechnol, 90, 809, 10.1007/s00253-011-3167-9 Liu, 2009, Lignocellulosic biomass conversion to ethanol by Saccharomyces, 17 Liu, 2009, A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion, Gene, 446, 1, 10.1016/j.gene.2009.06.018 Liu, 2004, Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran, J Ind Microbiol Biotechnol, 31, 345, 10.1007/s10295-004-0148-3 Liu, 2008, Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae, Appl Microbiol Biotechnol, 81, 743, 10.1007/s00253-008-1702-0 Liu, 2009, Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways, Mol Genet Genomics, 282, 233, 10.1007/s00438-009-0461-7 Lu, 2006, Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum, Proc Natl Acad Sci USA, 103, 16165, 10.1073/pnas.0605381103 Lynd, 2002, Microbial cellulose utilization: fundamentals and biotechnology, Microbiol Mol Biol Rev, 66, 506, 10.1128/MMBR.66.3.506-577.2002 Lynd, 2005, Consolidated bioprocessing of cellulosic biomass: an update, Curr Opin Biotechnol, 16, 577, 10.1016/j.copbio.2005.08.009 Ma, 2010, Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae, BMC Genomics, 11, 660, 10.1186/1471-2164-11-660 Madshus, 1988, Regulation of intracellular pH in eukaryotic cells, Biochem J, 250, 1, 10.1042/bj2500001 Margolles-Clark, 1996, Cloning of genes encoding α-L-arabinofuranosidase and β-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae, Appl Environ Microbiol, 62, 3840, 10.1128/aem.62.10.3840-3846.1996 Martin, 2007, Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production, Appl Biochem Biotechnol, 137, 339 Martín, 2007, Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors, Bioresour Technol, 98, 1767, 10.1016/j.biortech.2006.07.021 Medve, 1994, Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reesei during hydrolysis of microcrystalline cellulose, Biotechnol Bioeng, 44, 1064, 10.1002/bit.260440907 Medve, 1998, Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes, Biotechnol Bioeng, 59, 621, 10.1002/(SICI)1097-0290(19980905)59:5<621::AID-BIT13>3.0.CO;2-C Mira, 2010, Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid, Microb Cell Fact, 9, 79, 10.1186/1475-2859-9-79 Mira, 2010, Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view, OMICS, 14, 525, 10.1089/omi.2010.0072 Modig, 2002, Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase, Biochem J, 363, 769, 10.1042/bj3630769 Moreau, 1992, Secretion of a Cryptococcus albidus xylanase in Saccharomyces cerevisiae, Gene, 116, 109, 10.1016/0378-1119(92)90637-5 Morosoli, 1993, Secretion of a Cryptococcus albidus xylanase in Pichia stipitis resulting in a xylan fermenting transformant, Curr Genet, 24, 94, 10.1007/BF00324671 Mroczek, 2008, Apoptic signals induce specific degradation of ribosomal RNA in yeast, Nucleic Acids Res, 36, 2874, 10.1093/nar/gkm1100 Navarro, 1994, Effects of furfural on ethanol fermentation by Saccharomyces cerevisiae: mathematical models, Curr Microbiol, 29, 87, 10.1007/BF01575753 Nevoigt, 2008, Progress in metabolic engineering of Saccharomyces cerevisiae, Microbiol Mol Biol Rev, 72, 379, 10.1128/MMBR.00025-07 Olsson, 1993, Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates, Process Biochem, 28, 249, 10.1016/0032-9592(93)80041-E Palmqvist, 2000, Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition, Bioresour Technol, 74, 25, 10.1016/S0960-8524(99)00161-3 Palmqvist, 1999, Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture, Biotechnol Bioeng, 62, 447, 10.1002/(SICI)1097-0290(19990220)62:4<447::AID-BIT7>3.0.CO;2-0 Pampulha, 1990, Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid, Appl Microbiol Biotechnol, 34, 375, 10.1007/BF00170063 Panagiotou, 2005, Intracellular metabolite profiling of Fusarium oxysporum converting glucose to ethanol, J Biotechnol, 115, 425, 10.1016/j.jbiotec.2004.09.011 Pérez-Gonzalez, 1996, Molecular cloning and expression in Saccharomyces cerevisiae of two Aspergillus nidulans xylanase genes, Appl Environ Microbiol, 62, 2179, 10.1128/aem.62.6.2179-2182.1996 Petersson, 2006, A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance, Yeast, 23, 455, 10.1002/yea.1370 Piper, 1998, The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast, EMBO J, 17, 4257, 10.1093/emboj/17.15.4257 Raman, 2009, Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis, PLoS One, 4, e5271, 10.1371/journal.pone.0005271 Ruiz, 2007, Sugar fermentation by Fusarium oxysporum to produce ethanol, World J Microbiol Biotechnol, 23, 259, 10.1007/s11274-006-9222-5 Russell, 1992, Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling, J Appl Bacteriol, 73, 363, 10.1111/j.1365-2672.1992.tb04990.x Ryabova, 2003, Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha, FEMS Yeast Res, 4, 157, 10.1016/S1567-1356(03)00146-6 Ryu, 2011, A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates, Appl Microbiol Biotechnol, 91, 529, 10.1007/s00253-011-3261-z Saha, 2003, Hemicellulose bioconversion, J Ind Microbiol Biotechnol, 30, 279, 10.1007/s10295-003-0049-x Sakamoto, 2011, Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells, J Biotechnol Sanchez, 1988, Effects of furfural and 5-hydroxymethylfurfural on the fermentation of Saccharomyces cerevisiae and biomass production from Candida guilliermondii, Enzyme Microb Technol, 10, 315, 10.1016/0141-0229(88)90135-4 Sánchez, 2008, Trends in biotechnological production of fuel ethanol from different feedstocks, Bioresour Technol, 99, 5270, 10.1016/j.biortech.2007.11.013 Sanda, 2011, Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acid, Bioresour Technol, 10.1016/j.biortech.2011.06.028 Sauer, 2001, Evolutionary engineering of industrially important microbial phenotypes, Adv Biochem Eng Biotechnol, 73, 129 Shoham, 1999, The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides, Trends Microbiol, 7, 275, 10.1016/S0966-842X(99)01533-4 Skory, 1997, Screening for ethanol-producing filamentous fungi, Biotechnol Lett, 19, 203, 10.1023/A:1018337003433 Slininger, 2011, Repression of xylose-specific enzymes by ethanol in Scheffersomyces (Pichia) stipitis and utility of repitching xylose-grown populations to eliminate diauxic lag, Biotechnol Bioeng, 108, 1801, 10.1002/bit.23119 Sonderegger, 2003, Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose, Appl Environ Microbiol, 69, 1990, 10.1128/AEM.69.4.1990-1998.2003 Stevenson, 2002, Isolation and characterization of a Trichoderma strain capable of fermenting cellulose to ethanol, Appl Microbiol Biotechnol, 59, 721, 10.1007/s00253-002-1027-3 Sticker, 2008, Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei), Appl Microbiol Biotechnol, 78, 211, 10.1007/s00253-007-1322-0 Sundström, 2010, Identification of Saccharomyces cerevisiae genes involved in the resistance to phenolic fermentation inhibitors, Appl Biochem Biotechnol, 161, 106, 10.1007/s12010-009-8811-9 Takada, 1998, Expression of Aspergillus aculeatus No. F-50 cellobiohydrolase I (cbhI) and β-glucosidase 1 (bgl1) genes by Saccharomyces cerevisiae, Biosci Biotechnol Biochem, 62, 1615, 10.1271/bbb.62.1615 Tanaka, 2000, Cell surface engineering of yeast: construction of arming yeast with biocatalyst, J Biosci Bioeng, 90, 125, 10.1016/S1389-1723(00)80099-7 Teeri, 1997, Crystalline cellulose degradation: new insight into the function of cellobiohydrolases, Trends Biotechnol, 15, 160, 10.1016/S0167-7799(97)01032-9 Thomsen, 2009, Identification and characterization of fermentation inhibitors formed during hydrothermal treatment and following of wheat straw, Appl Microbiol Biotechnol, 83, 447, 10.1007/s00253-009-1867-1 Tomás-Pejó, 2010, Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes, J Ind Microbiol Biotechnol, 37, 1211, 10.1007/s10295-010-0768-8 Törrönen, 1994, Three-dimensional structure of endo-1,4-β-xylanase II from Trichoderma reesei: two conformational states in the active site, EMBO J, 13, 2493, 10.1002/j.1460-2075.1994.tb06536.x Tsai, 2009, Functional assembly of minicellulosomes on the Sacchromyces cerevisiae cell surface for cellulose hydrolysis and ethanol production, Appl Environ Microbiol, 75, 6087, 10.1128/AEM.01538-09 Tsai, 2010, Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production, Appl Environ Microbiol, 76, 7514, 10.1128/AEM.01777-10 van Maris, 2006, Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status, Antonie Van Leeuwenhoek, 90, 391, 10.1007/s10482-006-9085-7 van Rensburg, 1998, Engineering yeast for efficient cellulose degradation, Yeast, 14, 67, 10.1002/(SICI)1097-0061(19980115)14:1<67::AID-YEA200>3.0.CO;2-T van Rooyen, 2005, Construction of cellobiose-growing and fermenting Sacchromyces cerevisiae strains, J Biotechnol, 120, 284, 10.1016/j.jbiotec.2005.06.013 van Vleet, 2009, Yeast metabolic engineering for hemicellulosic ethanol production, Curr Opin Biotechnol, 20, 300, 10.1016/j.copbio.2009.06.001 van Zyl, 2007, Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae, Adv Biochem Eng Biotechnol, 108, 205 Vasan, 2011, Cellulosic ethanol production by Zymomonas mobilis harboring an endoglucanase gene from Enterobacter cloacae, Bioresour Technol, 102, 2585, 10.1016/j.biortech.2010.09.110 Vinzant, 2001, Fingerprinting Trichoderma reesei hydrolases in a commercial cellulase preparation, Appl Biochem Biotechnol, 91, 99, 10.1385/ABAB:91-93:1-9:99 Voronovsky, 2009, Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan, Metab Eng, 11, 234, 10.1016/j.ymben.2009.04.001 Wahlbom, 2003, Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054, FEMS Yeast Res, 3, 319, 10.1016/S1567-1356(02)00206-4 Wen, 2010, Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol, Appl Environ Microbiol, 76, 1251, 10.1128/AEM.01687-09 Wisselink, 2009, Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains, Appl Environ Microbiol, 75, 907, 10.1128/AEM.02268-08 Wood, 1992, Fungal cellulases, Biochem Soc Trans, 20, 46, 10.1042/bst0200046 Woodward, 1991, Synergism in cellulose systems, Bioresour Technol, 36, 67, 10.1016/0960-8524(91)90100-X Xu, 2009, Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose, Curr Opin Biotechnol, 20, 364, 10.1016/j.copbio.2009.05.006 Xu, 2010, Factors influencing cellulosome activity on Consolidated Bioprocessing of cellulosic ethanol, Bioresour Technol, 101, 9560, 10.1016/j.biortech.2010.07.065 Yamada, 2010, Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strain, Microb Cell Fact, 9, 32, 10.1186/1475-2859-9-32 Yamada, 2011, Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression, Biotechnol Biofuels, 4, 8, 10.1186/1754-6834-4-8 Yanase, 2010, Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes, Appl Microbiol Biotechnol, 88, 381, 10.1007/s00253-010-2784-z Yanase, 2010, Ethanol production from cellulosic materials using cellulase-expressing yeast, Biotechnol J, 5, 449, 10.1002/biot.200900291 Zhang, 2004, Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems, Biotechnol Bioeng, 88, 797, 10.1002/bit.20282 Zhang, 2006, Outlook for cellulase improvement: screening and selection strategies, Biotechnol Adv, 24, 452, 10.1016/j.biotechadv.2006.03.003 Zhang, 2010, Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol production, Biotechnol Biofuels, 3, 26, 10.1186/1754-6834-3-26 Zhang, 2011, Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene, Biotechnol Lett, 33, 277, 10.1007/s10529-010-0433-3 Zheng, 2011, Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance, Bioresour Technol, 102, 3020, 10.1016/j.biortech.2010.09.122 Zhou, 2001, Simultaneous saccharification and fermentation of amorphous cellulose to ethanol by recombinant Klebsiella oxytoca SZ21 without supplemental celloulase, Biotechnol Lett, 23, 1455, 10.1023/A:1011623509335 Zhou, 2001, Gene integration and expression and extracellular secretion of Erwinia chrysanthemi endoglucanase CelY (celY) and CelZ (celZ) in ethanologenic Klebsiella oxytoca P2, Appl Environ Microbiol, 67, 6, 10.1128/AEM.67.1.6-14.2001