Phát triển phương pháp chiết xuất vi thể lỏng-lỏng phân tán hỗ trợ siêu âm kết hợp tiêm khối lượng lớn - sắc ký khí - phổ khối liên hợp để xác định các chuyển hóa pyrethroid trong não của chuột cống được điều trị bằng cypermethrin

Springer Science and Business Media LLC - Tập 32 - Trang 19-29 - 2013
Mohana Krishna Reddy Mudiam1, Rajeev Jain1,2, Anshuman Singh3, Haider A. Khan2, Devendra Parmar3
1Analytical Chemistry Section, CSIR-Indian Institute of Toxicology Research, Lucknow, India
2Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
3Developmental Toxicology Division, CSIR—Indian Institute of Toxicology Research, Lucknow, India

Tóm tắt

Axit 3-phenoxybenzoic (3-PBA) và axit 4-hydroxy-3-phenoxybenzoic (OH-PBA) là hai chuyển hóa phổ biến cho hầu hết các thuốc trừ sâu lớp pyrethroid. Một phương pháp nhanh, nhạy và thân thiện với môi trường đã được phát triển dựa trên chiết xuất vi thể lỏng-lỏng phân tán hỗ trợ siêu âm (DLLME) kết hợp với tiêm khối lượng lớn - sắc ký khí - phổ khối liên hợp để xác định đồng thời các chuyển hóa pyrethroid trong não chuột cống được điều trị bằng cypermethrin (CYP). Mẫu não được đồng nhất trong methanol (dung môi phân tán) sau đó được dẫn xuất hóa với methyl chloroformate (MCF) và chiết xuất bằng DLLME. Các yếu tố ảnh hưởng đến hiệu suất chiết xuất và dẫn xuất như loại và thể tích dung môi chiết xuất và phân tán, thời gian siêu âm, pH, độ dẫn điện, và thể tích của MCF và pyridine đã được tối ưu hóa. Dưới các điều kiện tối ưu, giới hạn phát hiện là 1 và 4 ng/g cho 3-PBA và OH-PBA, tương ứng. Tỷ lệ phục hồi trung bình của các chuyển hóa pyrethroid trong não chuột cống nằm trong khoảng 83–95 %. Phương pháp phát triển đã được áp dụng thành công để xác định 3-PBA và OH-PBA trong mẫu não của chuột cống được điều trị CYP. Phương pháp phát triển có thể được áp dụng cho phân tích nhanh và nhạy các chuyển hóa pyrethroid trong các phòng thí nghiệm độc tính và pháp y.

Từ khóa

#pyrethroid metabolites #ultrasound-assisted dispersive liquid-liquid microextraction #gas chromatography #tandem mass spectrometry #cypermethrin

Tài liệu tham khảo

Feo ML, Eljarrat E, Barcelo D (2010) Determination of pyrethroid insecticides in environmental samples. Trends Anal Chem 29:692–706 Lin CH, Yan CT, Kumar PV, Li HP, Jen JF (2011) Determination of pyrethroid metabolites in human urine using liquid phase microextraction coupled in-syringe derivatization followed by gas chromatography/electron capture detection. Anal Bioanal Chem 401:927–937 Grand RL, Dulaurent S, Gaulier JM, Marcoux FS, Moesh C, Lachatre G (2012) Simultaneous determination of five synthetic pyrethroid metabolites in urine by liquid chromatography–tandem mass spectrometry: application to 39 persons without known exposure to pyrethroids. Toxicol Lett 210:248–253 Shrivastava A, Peshin SS, Kaleekal T, Gupta SK (2005) An epidemiological study of poisoning cases to the National Poison Information Centre, All India Institute of Medical Sciences, New Delhi. Hum Exp Toxicol 24:6279–6285 Ch SR, Venkateswarlu V, Surender T, Eddleston M, Buckley NA (2005) Pesticide poisoning in south India: opportunities for prevention and improved medical management. Trop Med Int Health 6:581–588 Mudiam MKR, Jain R, Mourya SK, Khan HA, Bandyopadhyay S, Murthy RC (2012) Low density solvent based dispersive liquid–liquid microextraction with gas chromatography-electron capture detection for the determination of cypermethrin in tissue and blood of cypermethrin treated rats. J Chromatogr B 895–896:65–70 Mishra S, Sharma CB (1997) Metabolism and bioaccumulation of fenvalerate and its metabolites in rat organs. Biomed Chromatogr 11:50–53 Marei AEM, Ruzo LO, Casida JE (1982) Analysis and persistence of permethrin, cypermethrin, deltamethrin, and fenvalerate in the fat and brain of treated rats. J Agric Food Chem 30:558–562 Barr DB, Olsson AO, Wong LY, Udunka S, Baker SE, Whitehead RD, Magsumbol MS, Williams BL, Needham LL (2010) Urinary concentration of metabolites of pyrethroid insecticides in the general U.S. population: National Health and Nutrition Examination Survey 1999–2002. Environ Health Perspect 118:742–748 Maloney SE, Maule A, Smith AR (1988) Microbial transformation of the pyrethroid insecticides: permethrin, deltamethrin, fastac, fenvalerate and fluvalinate. Appl Environ Microbiol 54:2874–2876 Woolen BH, Marsh JR, Laird WJD, Lesser JE (1999) The metabolism of cypermethrin in man: differences in urinary metabolite profiles following oral and dermal administration. Xenobiotica 22:983–991 Wang D, Kamijima M, Imai R, Suzuki T, Kameda Y, Asai K, Okamura A, Naito H, Ueyama J, Saito I, Nakajima T, Goto M, Shibata E, Kondo T, Takagi K, Takaji K, Wakusawa S (2007) Biological monitoring of pyrethroid exposure of pest control workers in Japan. J Occup Health 49:509–514 Aziz MH, Agrawal AK, Adhami VM, Shukla Y, Seth PK (2001) Neurodevelopmental consequences of gestational exposure (GD14–GD20) to low dose deltamethrin in rats. Neurosci Lett 300:161–165 Ding Y, White CA, Muralidhara S, Bruckner JV, Bartlett MG (2004) Determination of deltamethrin and its metabolite 3-phenoxybenzoic acid in male rat plasma by high-performance liquid chromatography. J Chromatogr B 810:221–227 Ahn KC, Gee SJ, Kim HJ, Aronov PA, Vega H, Krieger RI, Hammock BD (2011) Immunochemical analysis of 3-phenoxybenzoic acid, a biomarker of forestry worker exposure to pyrethroid insecticides. Anal Bioanal Chem 401:1285–1293 Hardt J (2001) Ibuprofen interference in the determination of 3-phenoxybenzoic acid in urine. Fresenius J Anal Chem 371:787–790 Husek P (1998) Chloroformates in gas chromatography as general purpose derivatizing agents. J Chromatogr B 717:57–91 Sams C, Jones K (2011) Biological monitoring for exposure to deltamethrin: a human oral dosing study and background levels in the UK general population. Toxicol Lett 213:35–38 Mudiam MKR, Jain R, Dua VK, Singh AK, Sharma VP, Murthy RC (2011) Application of ethyl chloroformate derivatization for solid-phase microextraction-gas chromatography-mass spectrometric determination of bisphenol-A in water and milk samples. Anal Bional Chem 401:1695–1701 Pusvaskiene E, Januskevic B, Prichodko A, Vickackaite V (2009) Simultaneous derivatization and dispersive liquid–liquid microextraction for fatty acids GC determination in water. Chromatographia 69:271–276 Leggio A, Belsito EL, Marco RD, Liguori A, Siciliano C, Spinella M (2012) Simultaneous extraction and derivatization of amino acids and free fatty acids in meat products. J Chromatogr A 1241:96–102 Luo S, Fang L, Wang X, Liu H, Ouynag G, Lan C, Luan T (2010) Determination of octylphenol and nonylphenol sample using simultaneous derivatization and dispersive liquid–liquid microextraction by gas chromatography–mass spectrometry. J Chromatogr A 1217:6762–6768 Yonamine M, Tawil N, Moreau RLDM, Silva OA (2003) Solid-phase micro-extraction-gas chromatography–mass spectrometry and headspace-gas chromatography of tetrahydrocannabinol, amphetamine, methamphetamine, cocaine and ethanol in saliva samples. J Chromatogr B 789:73–78 Saito T, Miura N, Namara A, Oikawa H, Miyazaki S, Nakamoto A, Inokuchi S (2012) Mixed-mode C-C18 monolithic spin-column extraction and GC–MS for simultaneous assay of organophosphorous compounds, glyphosate, and glufosinate in human serum and urine. Forensic Toxicol 30:1–10 Namera A, Saito T, Miyazaki S, Ohta S, Oikawa H, Torikoshi A, Shiraishi H, Nagao M (2013) Sequential extraction of amphetamines, opiates, and 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid from a limited volume of urine using a monolithic silica spin column coupled with gas chromatography–mass spectrometry. Forensic Toxicol 31:312–321 Hayashi D, Kumazawa T, Hasegawa C, Lee X-P, Marumo A, Uchigasaki S, Kawamura M, Sato K (2012) A simple and reliable method for quantifying plasma concentrations of tetracyclic antidepressants using monolithic silica solid-phase extraction tips. Forensic Toxicol 30:98–105 Menck RA, de Oliveira CDR, de Lima DS, Goes LE, Leyton V, Pasqualucci CA, Munoz DR, Yonamine M (2013) Hollow fiber-liquid phase microextraction of barbiturates in liver samples. Forensic Toxicol 31:31–36 Rezaee M, Assadi Y, Hosseini MRM, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid–liquid microextraction. J Chromatogr A 1116:1–9 Cortada C, Vidal L, Canals A (2011) Determination of geosmin and 2-methylisoborneol in water and wine samples by ultrasound-assisted dispersive liquid–liquid microextraction coupled to gas chromatography–mass spectrometry. J Chromatogr A 1218:17–22 Mudiam MKR, Chauhan A, Jain R, Ch R, Fatima G, Malhotra E, Murthy RC (2012) Development, validation and comparison of two microextraction technique for the rapid and sensitive determination of pregabalin in urine and pharmaceutical formulations after ethyl chloroformate derivatization followed by gas chromatography–mass spectrometric analysis. J Pharm Biomed Anal 70:310–319 Rezaee M, Yamini Y, Faraji M (2010) Evaluation of dispersive liquid–liquid microextraction method. J Chromatogr A 1217:2342–2357 Shafer TJ, Meyer DA, Crofton KM (2005) Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs. Environ Health Prespect 113:123–136 Singh A, Yadav S, Shrivastava V, Kumar R, Singh D, Sethumadhavan R, Parmar D (2013) Imprinting of cerebral and hepatic cytochrome P450 in rat offsprings exposed to low dose of cypermethrin. Mol Neurobiol. doi:10.1007/s12035-013-8419-5 Peters FT, Drummer OH, Musshoff F (2007) Validation of new methods. Forensic Sci Int 165:216 Kvitvang HFN, Andreassen T, Adam T, Boas SGV, Bruhein P (2011) Highly sensitive GC/MS/MS method for quantitation of amino and nonamino organic acids. Anal Chem 83:2705–2711 Husek P (1990) Fast esterification of fatty acids with alkyl chloroformates. J High Res Chrom 13:633–638 Zampolli MG, Basaglia G, Dondi F, Sternberg R, Szopa C, Pietrogrande MC (2007) Gas chromatography–mass spectrometry analysis of amino acid enantiomers as methyl chloroformate derivatives: application to space analysis. J Chromatogr A 1150:162–172 Wu Q, Li Z, Wu C, Wang C, Wang Z (2010) Application of ultrasound-assisted emulsification microextraction for the determination of triazine herbicides in soil samples by high performance liquid chromatography. Microchim Acta 170:59–65 Cartiser N, Bevalot F, Le Meur C, Gaillard Y, Malicier D, Hubert N, Guitton J (2011) Gas chromatography–tandem mass spectrometry assay for the quantification of four benzodiazepines and citalopram in eleven postmortem rabbit fluid and tissues, with application to animal and human samples. J Chroamtogr B 879:2909–2918 Zaitsu K, Miyagawa H, Sakamoto Y, Matsuta S, Tsuboi K, Nishioka H, Katai M, Sato T, Tatsuno M, Tsuchihashi H, Suzuki K, Ishii A (2013) Mass spectrometric differentiation of the isomers of mono-methoxyethylamphetamines and mono-methoxydimethylamphetamines by GC–EI–MS–MS. Forensic Toxicol 31:292–300