Development of travelling heater method for growth of detector grade CdZnTe single crystals

Materials Science in Semiconductor Processing - Tập 169 - Trang 107897 - 2024
P. Vijayakumar1, Edward Prabu Amaladass1,2, K. Ganesan1,2, R.M. Sarguna1, Varsha Roy1, S. Ganesamoorthy1,2
1Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, India
2Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India

Tài liệu tham khảo

Alam, 2021, Recent progress in CdZnTe based room temperature detectors for nuclear radiation monitoring, Prog. Nucl. Energy, 140, 10.1016/j.pnucene.2021.103918 Mele, 2023, Advances in high-energy-resolution CdZnTe linear array pixel detectors with fast and low noise readout electronics, Sensors, 23, 1, 10.3390/s23042167 Ünal, 2022, Production of high-performance CdZnTe crystals grown by THM for radiation detection applications, J. Electron. Mater., 51, 4675, 10.1007/s11664-022-09663-y Roy, 2021, Advances in CdZnTeSe for radiation detector applications, Radiation, 1, 123, 10.3390/radiation1020011 Principato, 2023, A novel extraction procedure of contact characteristic parameters from current–voltage curves in CdZnTe and CdTe detectors, Sensors, 23, 6075, 10.3390/s23136075 Lucchetta, 2022, Characterization of a CdZnTe detector for a low-power CubeSat application, J. Instrum., 17, 10.1088/1748-0221/17/08/P08004 Zhu, 2021, Performance of larger-volume 40 × 40 × 10- and 40 × 40 × 15-mm CdZnTe detectors, IEEE Trans. Nucl. Sci., 68, 250, 10.1109/TNS.2021.3052133 Shy, 2020, Gamma-ray tracking for high energy gamma-ray imaging in pixelated CdZnTe, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 954 McCoy, 2019, Overcoming mobility lifetime product limitations in vertical bridgman production of cadmium zinc telluride detectors, J. Electron. Mater., 48, 4226, 10.1007/s11664-019-07196-5 Shkir, 2016, VGF bulk growth, crystalline perfection and mechanical studies of CdZnTe single crystal: a detector grade materials, J. Alloys Compd., 686, 438, 10.1016/j.jallcom.2016.05.308 Saucedo, 2008, Modified Bridgman growth of CdTe crystals, J. Cryst. Growth, 310, 2067, 10.1016/j.jcrysgro.2007.11.181 Laasch, 1994, CdTe crystal growth by a sublimation traveling heater method, J. Cryst. Growth, 141, 81, 10.1016/0022-0248(94)90095-7 Roy, 2012, Growth of detector-grade CZT by traveling heater method (THM): an advancement, Mater. Res. Soc. Symp. Proc., 1341, 29 Cheuvart, 1990, CdTe and CdZnTe crystal growth by horizontal Bridgman technique, J. Cryst. Growth, 101, 270, 10.1016/0022-0248(90)90980-Y Rudolph, 1995, Distribution and genesis of inclusions in CdTe and (Cd,Zn)Te single crystals grown by the Bridgman method and by the travelling heater method, J. Cryst. Growth, 147, 297, 10.1016/0022-0248(94)00617-2 Roy, 2010, Growth and interface study of 2 in diameter CdZnTe by THM technique, J. Cryst. Growth, 312, 2840, 10.1016/j.jcrysgro.2010.05.046 Hong, 2020, Studies on thermal and interface optimization for CdZnTe crystals by unseeded Traveling Heater Method, J. Cryst. Growth, 546, 10.1016/j.jcrysgro.2020.125776 Zhou, 2018, Modification of growth interface of CdZnTe crystals in THM process by ACRT, J. Cryst. Growth, 483, 281, 10.1016/j.jcrysgro.2017.12.003 Dost, 2007, Controlling the growth interface shape in the growth of CdTe single crystals by the traveling heater method, Compt. Rendus Mec., 335, 323, 10.1016/j.crme.2007.05.011 Bolotnikov, 2008, Effects of Te inclusions on the performance of CdZnTe radiation detectors, IEEE Trans. Nucl. Sci., 55, 2757, 10.1109/TNS.2008.2003355 Shiraki, 2009, THM growth and characterization of 100 mm diameter CdTe single crystals, IEEE Trans. Nucl. Sci., 56, 1717, 10.1109/TNS.2009.2016843 Gille, 1991, A new approach to crystal growth of Hg1-xCdxTe by the travelling heater method (THM), J. Cryst. Growth, 114, 77, 10.1016/0022-0248(91)90681-T Roy, 2013, Growth of CdZnTe crystals by the traveling heater method, J. Cryst. Growth, 379, 57, 10.1016/j.jcrysgro.2012.11.047 Bloedner, 1993, Growth of Hg1-xCdxTe single crystals by travelling heater method under accelerated crucible rotation conditions, J. Cryst. Growth, 130, 181, 10.1016/0022-0248(93)90850-V Triboulet, 1990, “Cold travelling heater method”, a novel technique of synthesis, purification and growth of CdTe and ZnTe, J. Cryst. Growth, 101, 216, 10.1016/0022-0248(90)90969-R Triboulet, 2004, Fundamentals of the CdTe synthesis, J. Alloys Compd., 371, 67, 10.1016/j.jallcom.2003.06.006 Wang, 2010, Analysis of In and Al doped high resistivity CdZnTe crystal, Phys. Status Solidi Curr. Top. Solid State Phys., 7, 1498 Shkir, 2018, Large size crystal growth, photoluminescence, crystal excellence, and hardness properties of In-doped cadmium zinc telluride, Cryst. Growth Des., 18, 2046, 10.1021/acs.cgd.7b01483 Steininger, 1970, Phase diagram of the Zn-Cd-Te ternary system, J. Electrochem. Soc., 117, 1305, 10.1149/1.2407297 Suh, 2016, Controlling the growth temperature gradient and interface shape for traveling heater method growth of CdTe single crystals, vol. XVIII Vijayakumar, 2020, Electrical resistivity studies on Cd0.9Zn0.1Te single crystals grown by travelling heater method, AIP Conf. Proc., 2265, 9 Peterson, 2016, Analysis of the traveling heater method for the growth of cadmium telluride, J. Cryst. Growth, 454, 45, 10.1016/j.jcrysgro.2016.08.055 Peterson, 2016, A fundamental limitation on growth rates in the traveling heater method, J. Cryst. Growth, 452, 12, 10.1016/j.jcrysgro.2015.10.025 Hong, 2020, Controlling nucleation during unseeded THM growth of CdZnTe crystal, J. Cryst. Growth, 534, 10.1016/j.jcrysgro.2020.125482 Strzałkowski, 2016, The composition effect on the thermal and optical properties across CdZnTe crystals, J. Phys. D Appl. Phys., 49, 10.1088/0022-3727/49/43/435106 Maxey, 1999, Zn concentration determination in CdZnTe by NIR spectroscopy, J. Cryst. Growth, 197, 427, 10.1016/S0022-0248(98)00741-6 del Sordo, 2009, Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications, Sensors, 9, 3491, 10.3390/s90503491 Sklyarchuk, 2020, Effect of CdTe crystal thickness on the efficiency of Cr/CdTe/Au Schottky-diode detectors, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 953 Kosyachenko, 2013, Optimal width of barrier region in X/γ-ray Schottky diode detectors based on CdTe and CdZnTe, J. Appl. Phys., 113, 10.1063/1.4790358 Gnatyuk, 2011, High resolution CdTe x- and gamma-ray detectors with a laser-formed p-n junction, vol. XIII He, 1998, Direct measurement of product of the electron mobility and mean free drift time of CdZnTe semiconductors using position sensitive single polarity charge sensing detectors, J. Appl. Phys., 84, 5566, 10.1063/1.368601