Development of robotic hand tactile sensing system for distributed contact force sensing in robotic dexterous multimodal grasping
Tóm tắt
Perceiving distributed tactile information during robotic dexterous grasping process is essential to improve its intelligence and automation. This paper presents a tactile sensing system for a multi-fingered robotic hand, and used to detect distributed contact forces andtactile information during robotic hand dexterous multimodal grasping applications. The tactile sensing system relies on the design of tactile sensors with multiple sensing units and is integrated onto robotic thumb, index and middle fingers, respectively. For robotic dexterous grasping, six types of grasping modes are selected and performed objects’ grasping experiments. Using the developed robotic hand tactile sensing system, the generated contact forces during grasping processes are recorded. Through analyzing the robotic hand grasp actions in each grasping mode, the characteristics of the detected tactile forces can be studied and compared, which can be used as the factor to further distinguish the different grasping modes. Therefore, our developed robotic hand tactile sensing system can provide the possibility to accurately measure the distributed contact forces during robotic hand dexterous manipulation applications, and be used for analyzing the relationship between tactile information characteristics and grasping mode movements.
Tài liệu tham khảo
An, B.W., Heo, S., Ji, S., Bien, F., Park, J.U.: Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat. Commun. 9(1), 1–10 (2018)
Cini, F., Ortenzi, V., Corke, P., Controzzi, M.: On the choice of grasp type and location when handing over an object. Sci. Robot. 4(27), eaau9757-13 (2019)
Deng, H., Zhang, Y., Duan, X.G.: Wavelet transformation-based fuzzy reflex control for prosthetic hands to prevent slip. IEEE Trans. Industr. Electron. 64(5), 3718–3726 (2017)
Deng, H., Luo, H., Wang, R., Zhang, Y.: Grasping force planning and control for tendon-driven anthropomorphic prosthetic hands. J. Bionic Eng. 15(5), 795–804 (2018)
Dong, W.T., Wang, Y.H., Zhou, Y., Bai, Y.Z., Ju, Z.J., Guo, J.J., Gu, G.Y., Bai, K., Ouyang, G.X., Chen, S.M., Zhang, Q., Huang, Y.A.: Soft human-machine interfaces: design, sensing and stimulation. Int. J. Intell. Robot. Appl. 2(3), 313–338 (2018)
Fang, B., Jia, S.D., Guo, D., Xu, M.H., Wen, S.H., Sun, F.C.: Survey of imitation learning for robotic manipulation. Int. J. Intell. Robot. Appl. 3(4), 362–369 (2019)
Feix, T., Romero, J., Schmiedmayer, H.B., Dollar, A.M., Kragic, D.: The GRASP taxonomy of human grasp types. IEEE Trans. Hum-Mach. Syst. 46(1), 66–77 (2016)
He, L., Lu, Q., Abad, S.A., Rojas, N., Nanayakkara, T.: Soft fingertips with tactile sensing and active deformation for robust grasping of delicate objects. IEEE Robot. Automat. Lett. 5(2), 2714–2721 (2020)
Hu, D., Xiong, C.H., Liu, M.J.: Exploring the existence of better hands for manipulation than the human hand based on hand proportions. J. Theor. Biol. 440, 100–111 (2018)
Huh, T.M., Choi, H., Willcox, S., Moon, S., Cutkosky, M.R.: Dynamically reconfigurable tactile sensor for robotic manipulation. IEEE Robot. Automat. Lett. 5(2), 2562–2569 (2020)
Jiao, C.L., Lian, B.B., Wang, Z., Song, Y.M., Sun, T.: Visual-tactile object recognition of a soft gripper based on faster Region-based Convolutional Neural Network and machining learning algorithm. Int. J. Adv. Robot. Syst. 17(5), 1–13 (2020)
Kang, S.B., Ikeuchi, K.: Toward automatic robot instruction from perception - mapping human grasps to manipulator grasps. IEEE Trans. Robot. Autom. 13(1), 81–95 (1997)
Laffranchi, M., Boccardo, N., Traverso, S., Lombardi, L., Canepa, M., Lince, A., Semprini, M., Saglia, J.A., Naceri, A., Sacchetti, R., Gruppioni, E., De Michieli, L.: The Hannes hand prosthesis replicates the key biological properties of the human hand. Sci. Robot. 5(46), eabb0467-15 (2020)
Liu, Q., Qian, G.M., Meng, W., Ai, Q.S., Yin, C.Y., Fang, Z.Y.: A new IMMU-based data glove for hand motion capture with optimized sensor layout. Int. J. Intell. Robot. Appl. 3(1), 19–32 (2019)
Mahler, J., Matl, M., Satish, V., Danielczuk, M., DeRose, B., McKinley, S., Goldberg, K.: Learning ambidextrous robot grasping policies. Sci. Robot. 4(26), eaau4984-11 (2019)
Mannsfeld, S.C.B., Tee, B.C.K., Stoltenberg, R.M., Chen, C.V.H.H., Barman, S., Muir, B.V.O., Sokolov, A.N., Reese, C., Bao, Z.: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9(10), 859–864 (2010)
Ozawa, R., Tahara, K.: Grasp and dexterous manipulation of multi-fingered robotic hands: a review from a control view point. Adv. Robot. 31(19–20), 1030–1050 (2017)
Pinto, T., Cai, L., Wang, C., Tan, X.B.: CNT-based sensor arrays for local strain measurements in soft pneumatic actuators. Int. J. Intell. Robot. Appl. 1(2), 157–166 (2017)
Sundaram, S., Kellnhofer, P., Li, Y., Zhu, J.Y., Torralba, A., Matusik, W.: Learning the signatures of the human grasp using a scalable tactile glove. Nature 569(7758), 698–702 (2019)
Sundaralingam, B., Lambert, A. S., Handa, A., Boots, B., Hermans, T., Birchfield, S., Ratliff, N., Fox, D.: Robust learning of tactile force estimation through robot interaction. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 9035–9042 (2019)
Wang, S.H., Xu, J., Wang, W.C., Wang, G.J.N., Rastak, R., Molina-Lopez, F., Chung, J.W., Niu, S.M., Feig, V.R., Lopez, J., Lei, T., Kwon, S.K., Kim, Y., Foudeh, A.M., Ehrlich, A., Gasperini, A., Yun, Y., Murmann, B., Tok, J.B.H., Bao, Z.A.: Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555(7694), 83–88 (2018)
Wang, Y., Wu, X., Mei, D., Zhu, L., Chen, J.: Flexible tactile sensor array for distributed tactile sensing and slipdetection in robotic hand grasping. Sens. Actuator A Phys. 297, 111512–111513 (2019)
Wang, Y., Chen, J., Mei, D.: Recognition of surface texture with wearable tactile sensor array: a pilot study. Sens. Actuators, A 307(2020), 111972–112013 (2020)
Wang, Y., Chen, Z., Mei, D., Zhu, L., Wang, S., Fu, X.: Highly sensitive and flexible tactile sensor with truncated pyramid-shaped porous graphene/silicone rubber composites for human motion detection. Compos. Sci. Technol. 217(2022), 109078–109110 (2022)
Won, S.M., Wang, H., Kim, B.H., Lee, K., Jang, H., Kwon, K., Han, M., Crawford, K.E., Li, H., Lee, Y., Yuan, X., Kim, S.B., Oh, Y.S., Jang, W.J., Lee, J.Y., Han, S., Kim, J., Wang, X., Xie, Z., Zhang, Y., Huang, Y., Rogers, J.A.: Multimodal sensing with a three-dimensional piezoresistive structure. ACS Nano 13(10), 10972–10979 (2019)
Xie, R., Hou, S., Chen, Y., Zhang, K., Zou, B., Liu, Y., Liang, J., Guo, S., Li, H., Zheng, B., Li, S., Zhang, W., Wu, J., Huo, F.: Leather-based strain sensor with hierarchical structure for motion monitoring. Adv. Mater. Technol. 4(10), 1900442–1900448 (2019)
Xiong, C.H., Chen, W.R., Sun, B.Y., Liu, M.J., Yue, S.G., Chen, W.B.: Design and implementation of an anthropomorphic hand for replicating human grasping functions. IEEE Trans. Robot. 32(3), 652–671 (2016)
Xue, Y., Ju, Z., Xiang, K., Chen, J., Liu, H.: Multimodal human hand motion sensing and analysis-a review. IEEE Trans. Cogn. Dev. Syst. 11(2), 162–175 (2019)
Zhang, T., Jiang, L., Liu, H.: Design and functional evaluation of a dexterous myoelectric hand prosthesis with biomimetic tactile sensor. IEEE Trans. Neural Syst. Rehabil. Eng. 26(7), 1391–1399 (2018)
Zhao, X.H., Ma, S.N., Long, H., Yuan, H.Y., Tang, C.Y., Cheng, P.K., Tsang, Y.H.: Multifunctional sensor based on porous carbon derived from metal-organic frameworks for real time health monitoring (vol 10, pg 3986, 2018). ACS Appl. Mater. Interfaces. 10(12), 10599–10599 (2018)
Zhu, L., Wang, Y., Mei, D., Wu, X.: Highly sensitive and flexible tactile sensor based on porous graphene sponges for distributed tactile sensing in monitoring human motions. J. Microelectromech. Syst. 28(1), 154–163 (2019)
Zhu, M.L., He, T.Y.Y., Lee, C.K.: Technologies toward next generation human machine interfaces: from machine learning enhanced tactile sensing to neuromorphic sensory systems. Appl. Phys. Rev. 7(3), 031305–031337 (2020)
Zhuang, K.Z., Sommer, N., Mendez, V., Aryan, S., Formento, E., D’Anna, E., Artoni, F., Petrini, F., Granata, G., Cannaviello, G., Raffoul, W., Billard, A., Micera, S.: Shared human–robot proportional control of a dexterous myoelectric prosthesis. Nat. Mach. Intell. 1(9), 400–411 (2019)