Development of manganese oxide nanoparticles based chemical sensor for sensitive determination of an antiviral drug valaciclovir

Results in Chemistry - Tập 5 - Trang 100801 - 2023
Jayant I. Gowda1, Rohini M. Hanabaratti2, Sharanabasappa S. Hipparagi3
1Department of Chemistry, BLDEA’s Commerce, B.H.S. Arts and T.G.P. Science College, Jamkhandi 587301, Karnataka, India
2P. G. Department of Chemistry, BLDEA’s S.B. Arts and K.C.P. Science College, Vijayapur 586103, Karnataka, India
3Government College of Nursing, District Hospital Campus, Vijayapur 586102, Karnataka, India

Tài liệu tham khảo

Shao, 2010, Graphene based electrochemical sensors and biosensors: a review, Electroanalysis, 22, 1027, 10.1002/elan.200900571 Dey, 2013, Nanomaterial-based functional scaffolds for amperometric sensing of bioanalytes, Anal. Bioanal. Chem., 405, 3431, 10.1007/s00216-012-6606-2 Zhu, 2014, Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures, Anal. Chem., 87, 230, 10.1021/ac5039863 Bower, 2002 Butterworth, 1995, Zeta potential measurements on conducting polymer-inorganic oxide nanocomposite particles, J. Colloid Interface Sci., 174, 510, 10.1006/jcis.1995.1418 Chougule, 2012, Novel method for fabrication of room temperature polypyrrole–ZnO nanocomposite NO2 sensor, Measurement, 45, 1989, 10.1016/j.measurement.2012.04.023 Tsai, 2006, Electro-deposition of polypyrrole–multiwalled carbon nanotube–glucose oxidase nano biocomposite film for the detection of glucose, Biosens. Bioelectron., 22, 495, 10.1016/j.bios.2006.06.009 Thiagarajan, 2011, Electrochemical fabrication of nano manganese oxide modified electrode for the detection of H2O2, Int. J. Electrochem. Sci., 6, 2235, 10.1016/S1452-3981(23)18180-6 Shikandar, 2018, Silver-doped titania modified carbon electrode for electrochemical studies of furantril, ECS J. Solid State Sci. Technol., 7, Q3215, 10.1149/2.0321807jss Bukkitgar, 2017, Fabrication of TiO2 and clay nanoparticles composite electrode ASA sensor, Anal. Methods, 9, 4387, 10.1039/C7AY01068K Sohal, 2021, Biosensors based on MnO2 nanostructures: a review, ACS Appl. Nano Mater., 4, 2285, 10.1021/acsanm.0c03380 Liu, 2013, A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries, J. Nanomater., 2013, 1 Fei, 2017, Tuning the synthesis of manganese oxides nanoparticles for efficient oxidation of benzyl alcohol, Nanoscale Res. Lett., 12, 1, 10.1186/s11671-016-1777-y Ormrod, 2000, Valaciclovir: a review of its long term utility in the management of genital herpes simplex virus and cytomegalovirus infections, Drugs, 59, 839, 10.2165/00003495-200059040-00013 Saleh, 2016, Adsorptive square wave voltammetric determination of the antiviral drug valacyclovir on a novel sensor of copper microparticles–modified pencil graphite electrode, Arabian J. Chem., 9, 143, 10.1016/j.arabjc.2015.08.015 Jadhav, 2007, Development and validation of enantioselective high performance liquid chromatographic method for Valacyclovir, an antiviral drug in drug substance, J. Pharm. Biomed. Anal., 43, 1568, 10.1016/j.jpba.2006.11.018 Palacios, 2005, Validation of an HPLC method for the determination of Valacyclovir in pharmaceutical dosage, J. Liq. Chromatogr. Relat. Technol., 28, 751, 10.1081/JLC-200048898 Rao, 2006, RP-HPLC estimation of Valacyclovir in tablets, Asian J. Chem., 18, 2552 Savaser, 2003, Development and validation of an RP-HPLC method for the determination of Valacyclovir in tablets and human serum and its application to drug dissolution studies, J. Liq. Chromatogr. Relat. Technol., 26, 1755, 10.1081/JLC-120021283 Reddy, 2007, Spectrophotometric determination of Valacyclovir hydrochloride in bulk and pharmaceutical formulations, Asian J. Chem., 19, 2797 Srihari, 2013, Spectrophotometric determination of Valacyclovir in pharmaceutical formulations, Chem. Sci. Trans., 2, 61, 10.7598/cst2013.284 Sasanya, 2010, Analysis of the antiviral drugs acyclovir and valacyclovir-hydrochloride in tsetse flies (Glossinapallidipes) using LC–MSMS, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 878, 2384, 10.1016/j.jchromb.2010.07.008 Pham-Huy, 1999, Rapid determination of valaciclovir and acyclovir in human biological fluids by high-performance liquid chromatography using isocratic elution, J. Chromatogr. Biomed. Appl., 732, 47, 10.1016/S0378-4347(99)00261-3 Shah, 2013, Carbon nanotube based electrochemical sensor for the sensitive detection of valacyclovir, Faraday Discuss., 164, 135, 10.1039/c3fd00023k Todakar, 2019, Electro oxidation and analytical applications of valacyclovir at reduced graphene oxide modified carbon paste electrode, Mater. Today: Proc., 18, 550, 10.1016/j.matpr.2019.06.445 Pınar, 2017, Voltammetric investigation of antiviral drug valacyclovir at a boron-doped diamond electrode in different electrolyte media: its determination enhanced by anionic surfactant in pharmaceuticals and biological fluids, Curr. Pharm. Anal., 13, 175, 10.2174/1573412912666160901102844 Devarushi, 2018, Electrochemical behavior of an anti-viral drug valacyclovir at carbon paste electrode and its analytical application, Russ. J. Electrochem., 54, 760, 10.1134/S1023193518100026 Shetti, 2015, Electro-oxidation of captopril at a gold electrode and its determination in pharmaceuticals and human fluids, Anal. Methods, 7, 8673, 10.1039/C5AY01619C Killedar, 2022, Ultra-sensitive detection of tizanidine in commercial tablets and urine samples using zinc oxide coated glassy carbon electrode, Microchem. J., 172, 10.1016/j.microc.2021.106956 Patil, 2022, An Electrochemical electrode to detect theophylline based on copper oxide nanoparticles composited with graphene oxide, Micromachines, 13, 1166, 10.3390/mi13081166 Skoog, 1995, 8 Gowda, 2022, Manganese oxide nanoparticles modified electrode for electrosensing of antipsychotic drug olanzapine, Chem. Data Collect., 38, 10.1016/j.cdc.2021.100824 Ding, 2020, Manganese oxide nanomaterials: synthesis, properties, and theranostic applications, Adv. Mater., 32, 1905823, 10.1002/adma.201905823 Shetti, 2009, Electrochemical oxidation of loop diuretic furosemide at gold electrode and its analytical applications, Int. J. Electrochem. Sci., 4, 104, 10.1016/S1452-3981(23)15140-6 Malode, 2020, Electroanalysis of carbendazim using MWCNT/Ca-ZnO modified electrode, Electroanalysis, 32, 1590, 10.1002/elan.201900776 Bard, 2004 Julien, 2017, Nanostructured MnO2 as electrode materials for energy storage, Nanomaterials, 7, 396, 10.3390/nano7110396 P.L. Dutton, Redox potentiometry: Determination of midpoint potentials of oxidation-reduction components of biological electron-transfer systems. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1978; pp. 411–435. Alam, 2020, Bisphenol A electrochemical sensor using graphene oxide and β-cyclodextrin-functionalized multi-walled carbon nanotubes, Anal. Chem., 92, 5532, 10.1021/acs.analchem.0c00402 Laviron, 1979, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem., 101, 19, 10.1016/S0022-0728(79)80075-3 Bard, 2004, 236 Wu, 2004, Studies on electrochemical oxidation of azithromycin and its interaction with bovine serum albumin, Bioelectrochem, 64, 91, 10.1016/j.bioelechem.2004.03.005 Goyal, 2006, Electrochemical oxidation of inosine 5′-monophosphate in neutral aqueous solution, J. Electroanal. Chem., 591, 159, 10.1016/j.jelechem.2006.04.011 Oliveira-Brett, 2002, Electrochemical oxidation mechanism of guanine and adenine using a glassy carbon microelectrode, Bioelectrochemistry, 55, 61, 10.1016/S1567-5394(01)00147-5 Wang, 2002, Simultaneous determination of guanine and adenine in DNA using an electrochemically pretreated glassy carbon electrode, Anal. Chim. Acta, 461, 243, 10.1016/S0003-2670(02)00297-0 Chatterjee, 2012, Facile electrochemical approach for the effective detection of guanine, Electrochem. Commun., 20, 29, 10.1016/j.elecom.2012.03.044 Jain, 2015, Electrocatalytic quantification of antiviral drug valacyclovir, Ionics, 21, 3279, 10.1007/s11581-015-1511-2 Tarinc, 2015, Electrochemical behavior of valacyclovir and its square wave and differential pulse voltammetric determination in pharmaceuticals and biological fluids, Russ. J. Electrochem., 51, 149, 10.1134/S1023193515020135